
 1

Writing better object-oriented programs
.

James W Cooper

Moving from

 2

 3

James W Cooper

Rev 3-15-2024

Fairfield Easton Press

2024

Moving from

 4

Other books by James W Cooper

Python Programming w/ Design Patterns, ISBN:0-13-757993-4

Flameout, ISBN: 9781706406358

Food Myths Debunked, ISBN:978-1502386007

Where to Dine in Nantucket, ISBN: 978-1-304-19277-6

The Hollow, ISBN: 5-800051-790432

Introduction to Cooking for Graduate Students

C# Design Patterns: A Tutorial, ISBN:0-201-84453-2

Visual Basic Design Patterns, ISBN: 0-201-70265-7

Java Design Patterns: A Tutorial, ISBN: 0-201-48539-7

Principles of Object-Oriented Programming in Java, 1-56604-

530-4

The Visual Basic Programmer's Guide to Java, 1-56604-527-4

Object Oriented Programming in Visual Basic, 1-880935-49-x

A Jump Start Course in C++ Programming, 0-471-03171-2

Visual BASIC for DOS, ISBN: 0-471-59772-4

Writing Scientific Programs Under OS/2, ISBN:0-471-51928-6

Microsoft QuickBASIC for Scientists, ISBN: 0-471-61301-0

The Laboratory Microcomputer, ISBN: 0-471-81036-3

The Minicomputer in the Laboratory, 2nd ed 0-471-09012-3

Introduction to Pascal for Scientists, ISBN: 0-471-08785-8

Spectroscopic Techniques for Organic Chemists 0-471-05166-7

The Minicomputer in the Laboratory, ISBN: 0-471-01883-X

Copyright © 2024 by James W. Cooper

All rights reserved. This book or any portion thereof may not be

reproduced or used in any manner whatsoever without the express

written permission of the publisher except for the use of brief

quotations in a book review or scholarly journal.

First Printing 2024

Fairfield Easton Press

48 Old Driftway

Wilton, CT 06897

www.jameswcooper.com

 5

Contents

Introduction ... 17

How to use GitHub .. 18

Reference ... 19

Book organization ... 21

PART I – Learning C++ ... 21

PART II -Application Development 22

Part III – Design patterns ... 22

1. Basic C++ Syntax .. 23

Variables .. 23

Statements ... 23

Declaring variable types .. 24

Data types in C++ .. 25

Character Constants ... 26

The size_t type ... 27

Arithmetic Operations ... 27

Converting between numeric types 28

Arithmetic shortcuts .. 28

A complete program .. 29

Bitwise operators ... 30

Types of Integers ... 31

Positions of braces ... 31

The auto keyword .. 32

Example code .. 32

References ... 32

2. C++ Development Systems ... 33

 6

Visual Studio ... 34

CodeBlocks ... 34

CLion ... 35

Other IDE systems ... 36

References ... 36

3. Input and Output .. 37

Output using cout .. 37

Input using cin ... 38

Reading in whole lines .. 38

The std namespace ... 39

Formatting in Python ... 39

Formatting in C++ ... 40

Symbols in format function ... 42

Alignment and fill formatting .. 43

Error Handling in formatting ... 44

File handling .. 45

Binary files .. 46

Reading a binary file ... 47

Example files on GitHub ... 48

References ... 48

4. Loops, Arrays and Strings ... 49

Two-dimensional arrays .. 50

The for loop ... 51

The range based for loop ... 51

The while loops ... 52

Vectors ... 52

 7

Vector Methods .. 54

Strings .. 55

Reversing a string .. 56

String methods ... 57

Changing string case.. 58

Converting numbers to strings and vice-versa 58

Example Code on GitHub ... 59

5. Making Decisions .. 60

Elif is “else if” ... 60

Combining Conditions... 61

The Most Common Mistake .. 61

Comparing strings ... 62

A ticketing program ... 62

The switch statement ... 63

Break and continue .. 65

The ornery ternary operator ... 67

Example programs on GitHub ... 68

6. Functions ... 69

Function order ... 70

Polymorphism in functions .. 71

Function prototypes ... 71

Passing arguments to functions ... 72

Default arguments ... 73

Using constant declarations ... 74

Example programs ... 74

7. Using Pointers ... 75

 8

Arrays and pointers.. 76

Calling functions ... 77

Functions and Arrays ... 78

C strings and pointers .. 80

Example code on GitHub .. 81

8. Sets, tuples and maps ... 83

Sets .. 83

Merging sets .. 84

Tuples .. 85

Maps and Dictionaries ... 87

Example programs in GitHub .. 88

9. Classes and OOP ... 89

A Rectangle class. .. 89

Inheritance ... 92

More useful classes.. 93

Deriving new classes ... 96

Public, protected and private inheritance 97

Classes within a class .. 98

Classes and headers ... 100

Using Headers ... 103

The main program ... 104

Summary of headers .. 105

Multiple Inheritance .. 105

Polymorphism ... 107

Virtual Functions ... 108

Pure Virtual Functions ... 109

 9

Static class members... 111

Friend declarations .. 112

Constant classes ... 112

Example Programs... 113

10. Pointers and Memory .. 115

Classes and destructors .. 116

When is the destructor called? ... 117

Other uses for destructors .. 118

Smart Pointers ... 118

Example Code on GitHub ... 120

11. Using linked lists ... 121

Definitions ... 121

Creating the list ... 123

Traversing the list .. 123

The reverse iterator .. 125

Inserting a new cell in the chain .. 125

The copy constructor ... 126

Is this trip really necessary? .. 127

Deleting the copy constructor .. 128

Summary ... 128

Example Code ... 128

12. Templates ... 129

Template functions .. 129

Class templates .. 130

Class templates of classes .. 132

References ... 135

 10

Example Code ... 135

13. Creating user interfaces ... 137

A wxPython example ... 138

Strings in wxWidgets ... 140

Writing basic wxWidgets code .. 140

Sizers ... 142

Include Files .. 142

The Box Sizer .. 142

Splitting up the main app ... 143

More on labels ... 144

Entry fields and buttons ... 145

Events in wxWidgets ... 147

Adding two numbers together ... 149

The GridBag Sizer ... 149

The Add and Clear buttons .. 151

Command Buttons ... 152

Menus .. 154

Shortcuts and accelerators ... 156

Radio or check menuitems .. 157

Binding MenuItems ... 157

Dialog Boxes ... 158

The File Dialog .. 159

Installing wxWidgets ... 159

Example Programs on GitHub ... 160

References ... 161

14. Choices and Listboxes ... 163

 11

RadioButtons ... 163

Reading the Radio buttons ... 164

Responding to RadioButton clicks 165

Finding the calling object .. 167

ListBoxes ... 168

CheckListBoxes ... 170

The StateLister Application ... 171

Using a Mediator Class ... 172

The ComboBox ... 174

Checkboxes ... 175

Checkbox styles ... 177

Displaying tables in a grid ... 178

Selecting Grid regions ... 180

Other wxGrid features ... 182

The Tree widget ... 182

Moving on ... 183

Example programs on GitHub ... 183

Part II- Application Development.. 185

15. The Armadillo Math Library 187

Overview of Armadillo Classes ... 187

Matrices ... 188

Matrix methods .. 190

Matrix functions .. 190

Decompositions, Inverses and Equation Solvers 191

Signal and Image Processing ... 191

Matrix transpose .. 191

 12

The transpose ... 192

The Fast Fourier transform .. 193

Curve fitting .. 195

Installing and running Armadillo programs......................... 197

Running the example program .. 197

Running new armadillo programs 198

Example programs on GitHub ... 198

References ... 198

16. Plotting in C++ .. 201

Plotting using DrawLines .. 203

SciPlot ... 205

ROOT .. 207

The ROOT interpreter ... 208

Writing C++ code for ROOT ... 211

Writing ROOT code for a C compiler 212

Error bars ... 213

Plotting multiple lines in ROOT .. 214

Example programs on GitHub ... 216

References ... 216

17. Databases in C++ ... 219

SQLite ... 221

Downloading SQLite ... 221

SQLiteStudio ... 222

Programming SQLite in C++ .. 223

Compiling using Visual Studio .. 223

Example C++ code to connect to SQLite 227

 13

Building a database class structure 229

The Query object ... 230

The Results class ... 232

Using the SQLite classes ... 232

Database Tables ... 233

Adding rows to a Table .. 236

Prepared Queries ... 238

Summary ... 242

Example programs on GitHub ... 242

References ... 242

18. Using the MySql database ... 243

Installing MySQL .. 243

Writing C++ to connect to MySQL 244

Debugging libraries for Connector C++ 248

Creating C++ classes to connect to MySQL 248

Numeric types in MySQL ... 251

MySQL Query results .. 251

Why does printing out a Value object work? 252

Creating the MySQL groceries database 253

Prepared Queries in MySQL ... 254

Table functions in Connector C++ 256

Other approaches to prepared queries 257

Example programs on GitHub ... 258

Summary ... 258

References ... 258

19. Namespaces and Modules ... 261

 14

Modules ... 263

The module descriptor file ... 264

Make the descriptor file an include file 265

Combining namespaces and modules 265

Example code on GitHub .. 267

References ... 267

Part III -Design Patterns .. 269

Notes on Object Oriented Approaches 269

Commonly used Patterns ... 271

References ... 271

20. Factory Patterns ... 273

The Simple Factory Pattern ... 273

The Factory Method Pattern .. 276

Example programs on GitHub ... 282

21. The Abstract Factory Pattern 284

A GardenMaker Factory .. 284

The Plant class ... 285

A Garden class ... 285

How the GUI works ... 287

Example program In GitHub ... 289

22. Adapters ... 290

Moving Data between Lists ... 290

The Grid Adapter code .. 294

Class Adapters ... 296

The GridAdapter class ... 298

Finding the current row ... 300

 15

Object adapters and class adapters 301

Example Code on GitHub ... 301

23. The Bridge pattern ... 302

The Bridge ... 304

The VisLists ... 305

How to set up the Bridge ... 307

Other VisLists .. 308

Summary ... 310

Example programs on GitHub ... 310

References ... 310

Index .. 312

Basic C++ Syntax 16

Basic C++ Syntax 17

Introduction

This book teaches you how to write programs in C++ and

contrasts them with programs you might have written in Python.

Since the syntax of the two languages are pretty similar, this

should be a pretty easy transition. We also discuss libraries that

you can use in place of Python’s tkinter, Numpy and MatPlotLib.

Why should you take up C++? Well, since C++ is a compiled

language, that compiled code will run a lot faster. And you can

compile your program to run on several different platforms

without requiring the user to install Python or any other

compiler.

The single major difference in C++ is that you enclose blocks of

code in braces ({})rather than simply indenting. This eliminates

those annoying Python “indentation error” messages that can

sometimes be hard to correct.

The other major difference is that you must end every statement

with a semicolon.

C++ is a strongly typed language and requires that you declare a

type for every variable. Thus, you can’t accidentally use the

same variable name to represent different kinds of numbers or

strings as you can in Python.

But since the syntax of C++ and Python are very similar, you

will be able to write C++ code right away. In fact, you will

recognize our early examples as being ones you could easily

have written in Python.

Years ago, when Dick Lam and I wrote our first book on C++

[1], it was still a pretty new concept, and we wrote the book

using examples right along as we became familiar with the

language.

Basic C++ Syntax 18

Today, C++ has grown enormously from those early days, and

not only has a lot of neat new tricks, but it has also grown closer

to Python. So, you will be pretty comfortable in C++ as we go

along.

C++ is a satisfying experience because your code will be clearly

structured and, of course, it will run a lot faster than the same

code in Python.

We start at the beginning and take you through the language,

adding on features in each chapter. And you will find the code

for every example in the GitHub repository.

While you can write C++ on any platform and using any number

of tools, we will concentrate on creating C++ programs on

Windows using the free Community edition of Microsoft Visual

Studio. But everything we write will run on all major platforms.

You might be wondering if with all the AI systems now available

whether you still need to write your own programs at all. Of

course, the answer is YES! You can use AI tools like CHAT-GPT

to help you find how to write programs and provide you with

examples, but you will get the best uses of those AI tools if you

know how to ask the right questions. And those questions come

from understanding the fundamentals of C++ programming. That

is the objective of this book.

How to use GitHub

All of the example programs in this book are available for you to

download from GitHub. Look at

jwcnmr/jameswcooper/PyCpp

In case you are unfamiliar with GitHub, it is a free software

repository managed by Microsoft for sharing code; anyone can

use it.

To get started, go to GitHub.com and click on Sign Up. You will

need to create a user ID and a password and submit an Email

Basic C++ Syntax 19

address for verification. Then you can search for any code

repository (such as jameswcooper) and download any code you

want. There is also a complete manual on that website. The

complete path to the examples in this book is

https://github.com/jwcnmr/jameswcooper/tree/main/PyCpp.

If you are downloading a multifile project with both cpp and

include (.h) files, then when you create your Visual Studio

project, you should click on Header Files in the Solution

Explorer and add all the include files, and then click on Source

Files and add the .cpp files.

Reference

1. James W Cooper and Richard B Lam, A Jump Start

Course in C++ Programming, New York: Wiley-

Interscience, 1994.

https://github.com/jwcnmr/jameswcooper/tree/main/PyCpp

Basic C++ Syntax 20

Basic C++ Syntax 21

Book organization

This book is divided into three major sections: Learning C++,

Application Development and Design Patterns. While the

chapters are really a continuum, the latter chapters take up a

number of external packages you will want to use that are

analogous to ones in Python. The Design Pattern section shows

you useful techniques for writing more sophisticated programs.

PART I – Learning C++

• Chapter 1 introduces you to the syntax of the basic C++

language. Indentation is no longer required, but the

programing tools usually help you choose an indentation

style.

• Chapter 2 summarizes a number of the most popular

Integrated Development Environments (IDEs), and

makes some recommendations.

• Chapter 3 shows you how to write the equivalent of

print and input statements, and how to read and write

data from files.

• Chapter 4 takes you through arrays and more or less the

same sort of looping statements you learned in Python.

• Chapter 5 shows you how you can make decision in

C++, and you won’t be too surprised that they also are

pretty similar to Python and other languages.

• Chapter 6 introduces functions so you can group code

into useful units.

• Chapter 7 introduces pointers: really the first new

concept to you if you started in Python. They make it a

lot easier to keep from copying data all over the place

between functions

• Chapter 8 introduces sets, tuples and maps: all of which

should seem familiar to you.

• Chapter 9 brings you to classes, objects object-oriented

programming, which is pretty easy in C++, too.

Basic C++ Syntax 22

• Chapter 10 explains how you can reserve and release

memory, how you create pointers to refer to it.

PART II -Application Development

• Chapter 11 shows you how you can use pointer to create

linked lists

• Chapter 12 explains how templates expand the power of

C++ and why you are using them all the time without

knowing it.

• Chapter 13 shows you how to create C++ program with

a graphical user interface, or GUI.

• Chapter 14 continues from Chapter 13 explaining

Listboxes and choice boxes in your GUI.

• Chapter 15 introduces the Armadillo math library

• Chapter 16 introduces several plotting libraries you can

use.

• Chapter 17 introduces databases and SQLite

• Chapter 18 shows you how you can build the same

interface to MySQL, an industrial strength client server

database.

• Chapter 19 explains how you can put your code into

modules.

Part III – Design patterns

• Chapters 20-23 summarize a few important Design

Patterns used in creating more significant programs.

o Chapter 20 summarizes the Simple Factory and

Factory Method patterns.

o Chapter 21 illustrates the Abstract Factory

Pattern

o Chapter 22 shows how to use the Adapter

Pattern

o Chapter 23 shows you how to use Bridge

Pattern.

Basic C++ Syntax 23

1. Basic C++ Syntax

If you know Python, you are a long way towards learning C++

already. They have similar syntax, functions and a class structure

you will understand pretty quickly. So, in this introductory

chapter, we’ll concentrate on the differences between Python and

C++.

Of course, the main difference is that C++ runs much faster since

it is compiled directly into machine code. And C++ has a great

deal more flexibility in the ways you can build programs. But the

syntax is strikingly similar.

Variables

Variable names can be made up of upper and lowercase

characters, along with numbers and underscores. And like

Python, variable names can start with an underscore, although in

C++ it doesn’t signify any special properties. Like Python, case

is significant, so Apples and apples are different variables. And

like Python, variable names cannot contain spaces or any other

special characters.

Statements

The layout of code in C++ is very flexible. You can write one or

more statements on a single line or spanning multiple lines:

whichever is clearest to the reader. You terminate states in C++

with a semicolon character rather than the newline character

Python uses. There is no requirement for indenting blocks of

code, but it does make programs more readable.

apples = 5;
oranges = 5;

Or, you could write the same code on a single line:

apples = 5; oranges = 5;

Basic C++ Syntax 24

And like Python, if the variables are to have the same value, you

could also write

apples = oranges = 5;

Spacing between operators is optional, just as in Python, so you

could (inadvisably) write:

apples=oranges=5;

Declaring variable types

If you were to put these two statements into a little C++

program, however, they wouldn’t actually work! We’ve left out

the most significant difference between Python and C++. The

C++ language is strongly typed and you must declare the type of

every variable when you first use it. So, the complete syntax for

declaring these variables is

int apples = 5;
int oranges = 5;

The convention in C++ is to declare the variable right where you

use it, but you could also break that up into two declarations like

this:

int apples, oranges;

// and later:
apples = 5;
oranges = 5;

Note that here we have just introduced the single line comment,

It starts with two slashes and continues to the end of the line.

You can also create multiple line comments using the /* and */

delimiters:

Basic C++ Syntax 25

/* we declare apples and oranges here,
 and pass the values later */

int apples, oranges;

The whole point of declaring the type of each variable is so the

compiler can generate the most efficient code for that data type.

Thus, C++ is a strongly typed language, where each variable

must have a type declared. By contrast, Python is a weakly

typed language where data types are resolved at run time, not

compile time.

In Python, you could write

apple = "fruit" #and later write

apple = 5

and both would be correct. The type of apple would simply

change for the new declaration. Doing this in C++:

string apple = "fruit";

//and later
apple = 5; // would lead to a compiler error message

Note that when we create strings of characters, they are enclosed

in double quotes("). The single quote (') is reserved for

characters:

char c = 'a';

and can only hold a single character.

Data types in C++

The data types you use in C++ are pretty similar to those in

Python as shown in Table 1-1.

Basic C++ Syntax 26

int Integer 2 or 4

bytes

float 4 byte floating

point

7 digits of

precision

10-126 to 10127

double 8 byte floating

point

15 digits of

precision

10-1023 to 101024

char 1 byte one character Use single

quotes 'a'

bool Boolean, 1 byte true or false

string array of

characters

 Use double

quotes "apple"
Table 1-1 - Data types in C++

Python’s float type is equivalent to C++’s double type: Python

does not have a 4 byte floating point type. In fact, these days,

most C++ programmers use the double type exclusively, since

memory is seldom a limitation, and the greater precision is

useful.

Character Constants

C++ follows the C convention that the “whitespace characters”

can be represented by preceding special characters with a

backslash. Since the backslash itself is thus a special character, it

can be represented by using a double backslash.

'\n' newline (line feed)

'\r' carriage return

'\t' tab character

'\b' backspace

'\f' form feed

'\0' null character

'\"' double quote

'\'' single quote

'\\' backslash

Basic C++ Syntax 27

The size_t type

You will often see for loops using an index variable of type

size_t instead of type int. The size_t type is an unsigned integer

long enough to hold the largest number that the sizeof function

can return, and in modern systems it is usually am unsigned long

int, usually 64-bit. However, this can vary with the platform and

size_t is more general for manipulating indices that could

sometimes become very large. We will use it beginning in

Chapter 6.

Arithmetic Operations

Like most languages, you have the choice of the usual

operations:

+ Add

- Subtract

* Multiply

/ Divide

% Modulo

(the remainder after division)

Unlike Python, C++ does not promote integers to floats when

you specify division. So

9 / 4

does not result in 2.25, but just 2. The remainder is discarded. If

you want the integer remainder you can get it from the modulo

operator:

9 % 4

will result in a result of 1.

Doubles and floats do not convert to integers, so

5.0 / 2

will give 2.5.

Basic C++ Syntax 28

Converting between numeric types

You can always convert from a narrower type to a wider type just

using the equals sign, so

double y = 12;

so an integer is always promoted to a float or double.

If you want to convert to a narrower type from a wider type you

should “cast” the double to an integer, for example.

double x = 2.34;
int k = (int)x;

If you leave out that cast, the compiler will give you a warning:

double y = 12;
float f = y; //compiler warning

float f1 = (float)y; //no warning

Arithmetic shortcuts

Instead of writing:

k = k + 1;

you can compress that, just as in Python, to

k += 1;

But in C++, you can go farther are just write:

k++; // Add 1 to k after you use it

And just to be more elaborate, you can also write

++k; // Add 1 to k before you use it

Of course, you have to be a little careful with this one in writing

longer expressions, but it can be very useful.

Basic C++ Syntax 29

A complete program

Now, let’s look at our first complete program:

#include <iostream>
using namespace std;

//Add up the amount of fruit you have
int main()
{
 int apples = 5;
 int oranges = 7;
 int fruits = apples + oranges;

 // print out the sum
 cout << "Total fruit " << fruits << endl;
 return 0;
}

Programs in C++ generally begin with a main function as we

show here. Here are some basic observations:

1. Everything in that main function is enclosed in a pair of

braces. Indentation may be more readable but is not

required.

2. Single line comments begin with a pair of slashes.

3. The #include statement specifies the iostream library,

much like Python’s import statement.

4. The using namespace std directive allows you to avoid

typing the std:: prefix before the cout and endl

functions.

5. Output is created using the cout function (which stands

for “console out.” It is commonly pronounced “see out,”

but many people read it to themselves as “kout.”

6. The main function has a return value of zero if there are

no errors. If you return any other number, the operating

system will tell you there has been an error.

7. As you might expect, the output of this program is

Total fruit 12

Basic C++ Syntax 30

Bitwise operators
The bitwise operators are intended to do ANDs and ORs and

complements on integers to add or mask out individual bits.

& bitwise And

| bitwise Or

^ bitwise exclusive Or

~ one’s complement

>> n right shift n places

<< n left shift n places

Since bit manipulation may be less familiar to you, here are a

few examples. The whole purpose of setting specific bits in a

byte or integer is really so you can use that number to set some

sort of hardware register or other sort of bitmap.

The bitwise And is sometimes called a masking function. It

returns a number that has bits set to one are that are set in both of

the input values. So, if we start with

int x = 7; // 0111, and
int z = 10; // 1010, then
int val = x & z; // 0010,

// since only one bit is set in both

The Or operator sets bits in the result that are set in either value

val = x | z; // 1111 is the result

The complement operator switches all the ones and zeroes in the

number.

val = ~z; // 11110101 – to 8 bits
 // same as -z-1, or -1011

The left and right shift operators shift the bits to the left and

right, filling with zeroes.

val = x << 1; // left shift 1 place 1110

Basic C++ Syntax 31

val = x >> 1; // right shift 1 place 0011

Types of Integers

The names and lengths of various integer types parallels the

history of computer, and microprocessor, development. At one

time, integers were 16 bits, but we have pretty much settled on

32 bits (4 bytes) for integers, and 16 bits (2 bytes) for short or

short int types. Long or long int may be 4 or 8 bytes. The

numeric type list is shown in Table 1-2.

char 1 byte -usually for characters

short 2 byte

int 4 bytes

long 4 or 8 bytes

long long 8 bytes
Table 1-2 – Numeric types in C++

In addition, any of these types may be unsigned, meaning that

they cannot be negative. This also frees the sign bit of signed

integer to allow one more bit of data. This is much less

significant today than it was when we were trying to keep

memory usage compact in the “olden days.”

Positions of braces

In the example above, you see both the opening and closing

braces on separate lines like this:

int main()
{
...
}

It is also quite common to put the first brace at the end of the

previous line. This saves space on the screen or page but is still

very readable:

Basic C++ Syntax 32

int main() {
...
}

We’ll use that second convention throughout this book to

improve layout on the printed page.

The auto keyword

Since C++ version 11, you have been able to write:

double x = 12.3;
int k = 15;
auto quot = x/k;

The auto specifier tells the compiler to deduce the type from the

expression. While the result is obvious here, it may not be so

clear when you have complex expressions involving pointers to

data as we will see in Chapter 7.

This only works when the compiler can deduce the actual type.

Otherwise you will get an error message.

Now that we’ve seen a really simple C++ program, we’ll

consider some common development environments in the next

chapter.

Example code

• Example1.cpp -- simple code fragments from this

chapter

• Addfruits.cpp –- adds apples and blueberries

References

If you or one of your colleagues needs a basic tutorial on C++,

the free one on the w3schools site is quite good. Look at

https://www.w3schools.com/CPP/default.asp

C++ Development Systems 33

2. C++ Development Systems

If you are going to write C++ programs, you need a code editor

and compiler. These are usually bundled together as IDEs

(integrated Development Environments). C++ has new version

releases about ever 2-3 years. The current releases most

compilers support are 11, 14, 17, and 20, corresponding to the

years 2011 through 2020. The current version is 2023. Here we

profile a few IDEs although there are many more.

If you are just starting out, you can’t go wrong with a free on-

line system like OnlineGDB.

Not only will Onlinegdb work as a C++ development system, it

also supports development in C, Java, Python 3, PHP, C#, VB,

HTML/Javascript/CSS, Ruby, Perl, Pascal and FORTRAN. In

fact it supports versions of C++ from 14 through 20 as well.

It runs in your browser and compiles and runs code very quickly.

It is ideal for beginners, because you don’t have to install

anything to get started. You do have to create a free account

where it can store your programs, And, as you can see, it has a

C++ Development Systems 34

number of advertisements along the margins to support the

project.

You can create programs containing several modules and include

files if you read the instructions, but this is not its strength.

Visual Studio

You can download Microsoft’s Visual Studio Community Edition

from Microsoft for free. And, frankly, it is the easiest to use and

most intuitive of all the IDEs we’ve looked at.

You can use Visual Studio as a development system for C++, C,

Python and Visual Basic by simply selecting the type of project

you want to build. Creating multi-file projects is pretty easy and

you can build and debug programs without much trouble. It is

clearly the king of all the IDEs.

CodeBlocks

CodeBlocks is a free download which can either use the gcc

compiler or the compiler from Visual Studio. You can build

multiple file projects in it and it is recommended in that

w3schools tutorial we mentioned. However, we found almost

everything we tried to do less than obvious. You need to be

careful to select the correct download: the one containing the gcc

C++ Development Systems 35

debugger is the one you probably want. If you pick one without

that debugger, you will get confusing error messages.

Most IDEs come with several themes which select compatible

syntax highlight schemes and backgrounds, but in CodeBlocks,

you have to adjust each color yourself. It took quite a long time

before we found a setting that would make a decent screen shot.

In fact, while the system works quite well, it is not all that

intuitive.

CLion

CLion is made by JetBrains, the same company that makes the

popular PyCharm IDE for Python. While there is a highly

popular free Community Edition for PyCharm, CLion is only

free for 30 days, and then it costs $200 for the first year and a

decreasing annual price thereafter.

Nonetheless, it has the advantage of fast startup and compilation

that makes it ideal to try out new ideas before integrating them

C++ Development Systems 36

into larger project on Visual Studio. The IDE is fast and obvious

for single file projects and takes only a little time to learn to use

for multifile projects.

Other IDE systems

There are at least a dozen IDEs you might consider, reviewed by

Dori Esterman in his article “The Best C++ IDEs of 2022.” They

include Eclipse, Codellite, NetBeans, DevC++, C++ Builder and

Xcode. Any of the above will get you started and you can

explore the others at your leisure.

References

1. On Line GDB: https://www.onlinegdb.com/

2. Visual Studio: https://visualstudio.microsoft.com/vs/

3. CodeBlocks: https://www.codeblocks.org/

4. CLion: https://www.jetbrains.com/clion/

5. Best IDEs: https://www.incredibuild.com/blog/best-c-

ides

https://www.onlinegdb.com/
https://visualstudio.microsoft.com/vs/
https://www.jetbrains.com/clion/

Input and Output 37

3. Input and Output

In Python we used the print and input statements to write and

read from the console. These are pretty easy to use unless you

need to format the output to a certain number of places. Then

you get into formatting. In C++, you use streams to do the same

thing.. Whether the stream comes from the console or a file, the

syntax is exactly the same, making data handling much simpler.

Output using cout
In Chapter 1, our simple illustration used the cout object to send

a stream of characters to the console:

cout << fruit;

This syntax uses the less-than signs as a left arrow, meaning to

send the string value of the variable fruit to the console output.

As we noted previously the cout object is supposed to be

pronounced C-out (or “see out”) meaning “console out,” but to

save syllables, some people just say “kout.”

However, this leaves the cursor at the end of the line. To print a

line and move to the next line, using the endl object, which is

essentially a newline character.

cout << fruit << endl;

These cout and endl symbols are part of the std namespace,

which is why our example program begins with:

using namespace std;

If you decide not to load that huge namespace of symbols into

your program, you can also write the statements as:

std::cout << fruit << std::endl;

Input and Output 38

Input using cin
Likewise, you can read characters in from the keyboard using the

cin object followed by two greater-than signs, representing a

right arrow:

int apples;
cout << “Enter number of apples: “;
cin >> apples;

So, our complete program, including the using declaration is:

#include <iostream>
using namespace std;

//Add up the amount of fruit you have
int main() {
 int apples, oranges;

 //get numbers of apples and oranges from keyboard
 cout << "Enter number of apples :";
 cin >> apples;
 cout << "Enter number of oranges :";
 cin >> oranges;

 //add them together
 int fruits = apples + oranges;

 // print out the sum
 cout << "Total fruit " << fruits << endl;
 return 0;
}

Note that unlike Python’s input statement, the C++ cin method

converts the input string to the specified simple types

automatically. You can read into strings, doubles, floats or chars

without any special coding.

Reading in whole lines

The cin method only reads up to the first whitespace, which

might be a space or a Return. If you want to read in a whole line,

spaces and all, use the cin.getline() method. It reads characters

into a char array but you can easily convert that to a string.

Input and Output 39

 char name[100]; //create a char array
 cout << "Enter name: ";
 cin.getline(name, 100); //read in a line
 string nm(name); //convert to a string

The std namespace

The disadvantage of including the entire std namespace in any

C++ program of substantial size is that you might inadvertently

create a variable having the same name as one of the many

hundreds of keywords in that namespace. But clearly prefixing

every input or output method with “std::” is a significant pain.

There are two solutions to this collision problem. One is to

simply create using statements for the symbols you need:

using std::cout;
using std::cin;
using std::endl;

The other solution is to insert the “using namespace std” inside a

single function or class, so it is only active in a small, localized

code segment.

Formatting in Python

If you write the simple Python code:

x = 4.5/3.22
print(x)

Python will print out:

1.3975155279503104

which presents 16 figures, most of which are meaningless. The

quotient of these two numbers is irrational, producing an infinite

“run-on” decimal result. But such a calculation has at most 2 or 3

significant figures.

Input and Output 40

But Python doesn’t know this. In order to reduce this to just a

few significant digits, you can use the popular f-string

formatting:

print(f'{x:3.3f}')

which produces

1.398

And if you reduce that to two places

print(f'{x:3.2f}')

you get

1.40

which, honestly is about the level of precision you should be

expecting from 2-digit numbers.

Formatting in C++

The C++ cout object handles this a little differently, but there are

some similarities.

If you just print out the result of the same operation:

double x = 4.5/ 3.22;
cout << x << endl;

C++ prints out:

1.39752

rather than the long irrational number string you get from

Python. Briefly, the cout operation has a default width of 6

characters, excluding the decimal point, which is much more

friendly.

Input and Output 41

But if you want to format that number to fewer places, you use

the powerful format method. For each number you want to

format, you create a formatting expression inside a pair of

braces. The first character is always a colon. For fixed point

numbers like floats, you can specify a width number to the left of

a decimal point and the number of digits of precision to the right

of the decimal point.

You must include

import <format>
using std::format;

in your code, and you must be using C++ version 20 or more.

You can have any number of formatted numbers in a single

format statement. For each number you want to format, you

create a formatting expression inside a pair of braces. The first

character is always a colon. For fixed point numbers like floats,

you can specify a width number to the left of a decimal point and

the number of digits of precision to the right of the decimal

point.

Note that the formatting is enclosed in braces, and a list of those

variables comes after all those format descriptors and is outside

the quotes:

cout << format("Both: {:.3f} {:.2f}", x, z);

which will, of course, produce:

Both: 1.398 0.30

double x = 4.5/ 3.22;

cout << format("quotient is: {:.2}", x) <<endl;

The result is

quotient is: 1.4

Input and Output 42

because the format says a total of 2 places. If you want two

decimal places, you add an “f” for the float data type:

cout << format("quotient is: {:.2f}", x)

<<endl;

This produces

quotient is: 1.40

You can also fold that “endl” into the format statement by using

the character symbol for a newline:

cout << format("quotient is: {:.2f} \n", x);

Symbols in format function
Format has so many options that it is almost a grammar of its

own. The main symbols you might use are shown in Table 3-1.

< ^ > Left, center and right justify

+ Shows the + or – sign

An alternate representation

for hex and binary

w. Width if left of decimal point

.p Precision (floats) right of

decimal point

f x b e g Fixed point, hex, binary,

scientific and general

formatting

X B E G Same as x b e g except any

letters are capitalized
Table 3-1 -Formatting characters

The argument to the left of the decimal defines the width of the

field. So the number is printed with leading spaces in f, e or g

format:

cout << format("quotient is: {:10.2f} \n", x);

Input and Output 43

results in:

quotient is: 1.40

The format library picks suitable defaults for each type if you

leave out any specifiers. Here we see the default, scientific

notation and 12 decimal places illustrated:

double weight = 6250.444;

cout << format (

 "weight = {} {:.12e} {:.12f}\n",

 weight, weight, weight);

resulting int:

weight = 6250.444 6.250444000000e+03 6250.444000000000

Hexadecimal (base-16) and binary are convenient ways to print

out the bit pattern of variable when they are used as flags. This

only works on integers, however. Here we see x and X formats

ans well as the alternate representation of hex and finally of

binary:

int y = 9127;

cout << format

 ("y= {:8x} {:8X} {:#8x} {:b} \n",

 y, y, y, y);

y= 23a7 23A7 0x23a7 10001110100111

Alignment and fill formatting
You can align integers and strings inside a wider field using the

alignment characters (<, ^, and >), which align the values to the

left, center or right. The alignment character must come right

after the colon, unless you want to fill the field with something

other than a space. In that case the grammar is “:*<” where the

field gets filled with asterisks.

Input and Output 44

Here we see these alignment and fills illustrated for an integer

and a string:

int k =12;

int j = 20;

string word = "frazzle";

cout << format(

 "k and j= {:3} {:2} {}\n",

 k, j, word);

cout << format(

 "k and j= {:<3} {:*^12} {:>9} \n",

 k, j, word);

The result show both the unaligned and aligned values:

k and j= 12 20 frazzle
k and j= 12 *****20***** frazzle

Error Handling in formatting
The format library is not at all forgiving of errors in the order of

the symbols or the types you try to format. If you get the

symbols in the wrong order or try to print a string or integer as a

float, for example, you will get a runtime error rather than a

compile time error. This can be annoying, at least. For this

reason, you probably should try the formatting you plan to use

on small programs before using it in a larger project.

It is possible to catch the exception that the format object throws

and print out an error message:

//this one contains an error and will crash:
 try {
 cout << "trying to fail \n";
 cout << format("y= {:8.2f}", y);
 }
 catch (format_error& e) {
 cout << e.what() << endl;
 }

In the above example, the format function is asked to print out a

floating point value, the y is an integer. The error that gets

printed is pretty helpful:

Input and Output 45

Precision not allowed for this argument type.

File handling

Files in C++ are just different streams. You can read and write to

and from them almost as easily as from the console. If you are

reading a file, using the ifstream object and if you are writing a

file, use the ofstream object.

In this first simple program, we read from the file “states.txt”

which we use extensively in later chapters. It contains all 50 U.S.

states, their abbreviations, capitals and populations.

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main()
{
 const string FILENAME = "states.txt";

 ifstream txtFile(FILENAME); //open the file
 if (txtFile.is_open()) { //if it is open
 string line;
 while (getline(txtFile, line)) { //line at a time
 cout << line << endl; //print out line
 }
 txtFile.close(); //close the file
 }
}

Note that we open the file states.txt and read from it a line at a

time. This is the first program where we use braces to set off

blocks of code inside the larger program. We also indent the code

to make it more readable, but that is not required by the C++

compiler, but the braces are.

Input and Output 46

In this second example we read from one file and write into

another, named “mystates.txt.”

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main() {
 const string FILENAME = "states.txt";
 const string OUTFILE = "mystates.txt";

 ifstream txtFile(FILENAME); //open input file
 ofstream outFile(OUTFILE); //open output file

 //if both are open
 if (txtFile.is_open() && outFile.is_open()) {
 string line;
 while (getline(txtFile, line)) { //line at a time
 cout << line << endl; //print each line
 outFile << line << endl; //write to file
 }
 txtFile.close(); //close both files
 outFile.close();
 }
}

These examples use the while loop, which is pretty much like the

one in Python, and an if statement. We’ll cover them in detail in

the next two chapters.

Binary files

Writing and reading binary files is even simpler. You either write

them a byte at a time, or an entire dataset at one. The main

restriction is that you have to make the compiler believe that you

writing an array of bytes, by casting the data you are actually

writing into a pointer to an array of char.

In this example we create an array of 7 doubles and write them

to a file all at once:

Input and Output 47

#include <iostream>
#include <fstream>
using namespace std;

int main() {
 double temps[] = {22.3,35.7,44.8,55.2,61.6,73.8,89.3};

 //write entire file at once
 ofstream outfile;
 outfile.open("temps.dat",
 ios::binary | ios::out);
 outfile.write((const char*)&temps,
 sizeof(temps));
 outfile.close();

The resulting file,”temps.dat” is 56 bytes long or 8 x 7.

You can also write the data one data element at a time with a

simple for loop:

//write a byte at a time
outfile.open("tempsb1.dat", ios::binary |ios::out);
for (int i=0; i< size(temps); i++){
 outfile.write((const char*)&temps[i],
 Sizeof(temps[i]));
}
outfile.close();

The file “tempsb1.dat” is exactly the same as the “temps.dat”

file.

Reading a binary file
Here we create an empty 7 element double array and cast it in a

character array

double newtemps[7]; //create empty array
ifstream infile;
// read in data all at once
infile.open("tempsb1.dat", ios::binary | ios::in);

// reads 56 bytes
infile.read((char*)&newtemps, sizeof(newtemps));

Input and Output 48

infile.close();

Example files on GitHub

• Addfruits.cpp – add apples and blueberries

• Files1.cpp – reads a text file

• Filesout.cpp – writes a text file

• Fmrs.cpp – examples of formatting

• wbin.cpp – writes and read binary

References

1. https://www.geeksforgeeks.org/using-namespace-std-

considered-bad-practice/

Loops, Arrays and Strings 49

4. Loops, Arrays and Strings

The C++ array type is analogous to the Python List. But in C++,

everything has a type, so C++ arrays must be made up of

elements of the same type: integers, doubles, floats and strings.

Of course, we will soon see that you can make an array of class

objects as well.

In Python, a List is dynamic: you can create it and still append

new values of any type later. In C++, however, an array has a

fixed size and a fixed type. Once you create it, it remains that

size and type. For example:

//create an array of integers

int x[] = {2, 4, 5, 7, 9};

Note that you declare x as an array by including the empty

brackets. In this case, the data are then enclosed in braces. After

this statement, x will always be a 5-member array of integers.

You can access array members much as in Python by using

indexes in brackets.

cout << x[3];

This prints out the 4th member, “7,” since all arrays begin with an

index of 0, just as in Python.

Of course, you can also create an array and then fill it within

your program. Here we create a 10 member array and use a for

loop to place numbers in it, starting with 12, and adding 2 to the

number each time.

int y[10];
int aval = 12;

Loops, Arrays and Strings 50

// fill array with numbers starting at 12
// and incrementing by 2
for (int i=0; i<10; i++){
 y[i] = aval;
 aval += 2;
}

Then you can print them out just as easily.

//print out final array
for (int i=0; i<10; i++) {
 cout << y[i] <<" ";
}
cout <<endl;

giving the result:

12 14 16 18 20 22 24 26 28 30

Two-dimensional arrays

You can represent a 2- dimensional array by just enclosing

indices in two successive brackets. Here we create a little 2

dimensional 3 x 4 matrix:

double coords[3][4] {
 {3.4, 3.4, 5.5, 2.1},
 {2.2, 1.9, 1.2, 1.0},
 {2.7, 3.4, 4.4, 4.7}
};

Then, if you want to access the contents of that array, you refer

to each element using the same two brackets. This example

prints out the third column:

for (int j=0; j<3; j++) {
 cout<< coords[j][2] << " ";
}

The result is

5.5 1.2 4.4

Loops, Arrays and Strings 51

The for loop

You can see from the above examples that you can use the for

loop to step through an array. The start and end positions are

selectable, and you can adjust the “stride” to any increment you

want: you are not limited to 1. And you are not limited to

integers:

double tval[10];

int i=0;

for(double tmp =42; tmp < 142; tmp +=10.0) {

 tval[i++] = tmp;

}

In the above example, we are moving through a set of double

precision values starting at 42 and stopping just before the sum

reaches 142, with the for loop adding 10.0 each time. The actual

array index where we store these values is incremented in the

assignment statement just after it is used.

This is all quite different than the Python for loop which really

only runs sequentially through an iterator.

The range based for loop
There is a version of C++ for that does that too, and it is

convenient and readable. It’s called the range based for loop.

for (double a: tval) {

 cout << a <<" ";

}

It has the form

for (type variable: array_name) {
 operate on variable
}

In this approach, you must access the array sequentially: there is

no stride option.

Loops, Arrays and Strings 52

The while loops

There are two while loops available in C++;

while cond {
 statements
}

And

do {
 statements
} while cond;

Note that the while loop may not be executed at all if the

condition is false to start with, and the do while loop will

always be executed at least once.

For example,

i = 0;
while (i < size(tval)) {
 cout << tval[i++] << " ";
}

may or may not be executed at all and

i=0;
do {
 cout << tval[i++] << " ";
} while (i < size(tval));

will always be executed once.

Vectors

The vector is much like the Python List. It is a variable length

array of any type that you can add to, change or subtract from at

any time. The only difference is that in C++, the vector is

strongly typed and the type of values must be declared. Inserting

any other type of value is an error.

Somewhat awkwardly, the method for adding values to the end

of a vector list is named push_back.

Loops, Arrays and Strings 53

#include <iostream>
#include <vector>
using namespace std;

int main() {
 vector <double> vdata; //create a new vector
 vdata.push_back(42.0); //add values to the end
 vdata.push_back(63.2);
 vdata.push_back(77.1);

Of course, you could also declare the vector contents in a single

statement:

vector <double> vdat1 {42.0, 63.2, 77.1};

You can access any element of a vector just as if it were an array:

//print out 2nd and 3rd values
cout <<vdata[1] << " " << vdata[2] << endl;

Like Python, you can also pop values off the end of the vector

list.

vdata.pop_back(); //remove last element

But, unlike Python, that value is lost. To get the last value and

remove it takes two steps. First save that last value, and then

shorten the vector by one:

double last = vdata.back(); //get the last value
vdata.pop_back(); //remove it

You can, in fact, insert a new value anywhere in a vector. The

trick is to get the iterator that points to the first element, and use

it to insert. In this example, we insert a new value at the first

position.

//get the iterator pointing to the first element
vector<double>::iterator it = vdata.begin();
//and insert a new value just before it
it = vdata.insert (it , 200.4);

Loops, Arrays and Strings 54

Then you can look at the new vector in the usual way using a

range-based loop:

for (double a: vdata) {
 cout << a <<" ";
}

Here is the result. Remember we also removed the last value just

above.

200.4 42 63.2

If you create an empty vector and then add a bunch of values to

it, you are asking the vector to reallocate memory every time,

and this can be a slow process. It is better to start by creating a

vector with a default dimension:

//create a new vector and reserve 5 places
vector <double> vdata2(5);

This works even if you only use three places. The size of the

vector is 3 but the capacity is at least 5. If you create the vector

size in advance, you must access the data by its index. Using

push_back will add data to the end.

Vector Methods

 Table 4-1 shows most of the useful vector methods you might

use.

Begin Return iterator to first element

end Return iterator to end

size Return vector size

max_size Return maximum size

empty Return true if the vector is empty

resize Resize the vector

front Access first element

back Access last element

assign Assign new content replacing current

values and size

push_back Add value to end of vector

Loops, Arrays and Strings 55

pop_back Remove last value

insert Insert elements

swap Swap contents of two vectors

erase Remove one element of the vector
Table 4-1 - Vector methods

Strings

Strings in C++ are much more flexible than in Python. They are

not immutable: you can change characters and add or remove

characters much as you can with vectors. In fact, you can access

any character using brackets and an index, just as you did with

arrays and vectors. The string object is not an integral part of the

C++ language, but it was added as a standalone class in C++ 98.

Before that time C++ just used C strings which were arrays of

char terminated with a null character. You use the string class

much as you did in Python.

So, as you have seen, you can create a string

string a = "apple"; //create a string
string b("blueberry"); //create another string

and access characters like this:

//print out the 3rd character of a and the 4th of b
cout<< a[2] << b[3] <<endl;

Which prints out

pe

Note that an individual element of a string is a char, not a string

of length one.

You can also use the +-sign to combine strings together:

string fruits = a + " " + b;
cout << fruits << endl;

which, of course prints out the combined string stored in fruits.

Loops, Arrays and Strings 56

apple blueberry

You can also replace characters and insert characters since these

strings are not immutable. We change “blueberry” to

“blackberry” by changing the ‘u’ and ‘e’ to ‘a’ and ‘k’ and then

inserting a ‘c’.

//change blueberry to blackberry
fruits[8] = 'a'; fruits[9]='k';
fruits.insert(9,"c");
cout << fruits << endl;

Note that the insert method takes a string, not a character, so you

can insert whole strings anywhere you want to. The string class

also has the same push_back method you find in the vector

class, but note that you can only add single characters with it ,

not strings, so insert is preferable.

Reversing a string

Much is made of reversing a string in Python articles because the

articles then teach you the somewhat baroque grammar of string

slicing. And since strings in Python are immutable, you always

have to create a new reversed string output variable.

In C++ this is much simpler. Since you can switch the characters

one at a time, you can do the reversal like this:

fruits = a + " " + b;
string revString = fruits; //create the output variable

//and copy one from the front to the other from the back
for(int i = 0, j = fruits.length()-1;
 i < fruits.length(); i++, j--) {
 revString[j] = fruits[i];
}

Note that we also illustrate the great power of the for loop. You

can initialize more than one starting variable and increment or

decrement more than one variable.

Loops, Arrays and Strings 57

You can also use the built-in reverse function to reverse a string

(or a vector) in place:

reverse(fruits.begin(), fruits.end());

This works because the string’s begin() and end() methods return

iterators rather than counters and the internal code thus has

access to the characters of the string itself.

String methods

The string class has a substantial number of methods as we list in

Table 4-2. However, a number of the useful ones Python has like

toUpper, toLower, strip and split are missing. We’ll illustrate our

own version of these here and later in the text.

begin Return iterator to beginning

end Return iterator to end

size Size of string

length Length of string (same as size)

max_size Maximum size of string

resize Resize string

clear Clear string

empty Return true if empty

back Last character

front First character

append Append a string to the string

push_back Append a character to the string

insert Insert string into string

replace Replace portion of string

pop_back Remove last character

find Find substring in string

rfind Find last occurrence in string

find_first_of Find character in string

find_last_of Find last occurrence of character

substr Extract substring

compare Compare strings
Table 4-2 -String methods

Loops, Arrays and Strings 58

Changing string case

While the string class does not have the familiar Python upper()

and lower() functions, the char class does, so you can easily

convert a string to uppercase like this:

// to upper case
for(int i=0; i< fruits.length(); i++) {
 fruits[i] = toupper(fruits[i]);
}

Or, you can use the range-based approach:

string word = "BERRY";
int i = 0;
for (char c : word) {
 word[i++] = tolower(c);
}

And since C++ is a compiled language, your code will run just

about as fast as any built-in method would. We’ll illustrate the

trim and split methods in Chapter 14.

Converting numbers to strings and vice-versa

Converting from strings to numbers is very easy in C++ using

the string-to-integer (stoi), sting to double (stod) and string to

float (stof) functions:

//convert string to numbers
string snum = "123.4";
double dnum = stod(snum); //convert to double
float fnum = stof(snum); //convert to float
int inum = stoi(snum); //convert to int

You can convert any number to a string with the to_string

function:

//convert number to string
string newst = to_string(dnum);

This works for integers of all sizes, doubles and floats. However,

doubles and floats are by default represented to 6 decimal places;

Loops, Arrays and Strings 59

123.400000

even when all those digits are meaningless. If you want to

generate a string with fewer decimal places, using the format

method:

string outf = format("{:.2f}", dnum);

This will give you two decimal places:

123.40

Example Code on GitHub

• Array1.cpp – examples of one and 2D arrays

• Vectordemo.cpp – examples of vectors

• Stringdemo.cpp – examples of strings

• Stringrev.cpp – Reverse a string

• Numconv.cpp –conversion between string and numbers

Making Decisions 60

5. Making Decisions

The familiar if-else C from Python and Java has its analog in

C++. Indentation is common but not required. Many

development environments create this indentation for you.

However, if there is more than one statement in the if or else

blocks, they must be surrounded by braces.

int apples = 5, berries=7;
int fruit = apples + berries;
if (berries < apples) {
 cout << "add more berries"<<endl;
}

If you want to carry out either one set of statements or another

depending on a single condition, you should use the else clause

along with the if statement.

if (berries < apples) {
 cout << "add more berries"<<endl;
}

else {
 cout << "how about them apples?"<< endl;
}

and if the else clause contains multiple statements, they must be

surrounded with braces.

Elif is “else if”

When you have a number of choices in a row, such as in the

example below, it is helpful to use if and then else if. The final

case can be else which covers all the remaining possibilities.

int apples = 5, berries=7;
int fruit = apples + berries;
if (berries < apples) {
 cout << "add more berries"<<endl;
}
else if (apples == berries) {
 cout << "still need more berries" << endl;
}

Making Decisions 61

else {
 cout << "how about them apples?"<< endl;
}

Note that in this simple case, you can write this code without

braces, since there is only a single statement after each part of

the if statement.

if (berries < apples)
 cout << "add more berries"<<endl;
else if (apples == berries)
 cout << "still need more berries" << endl;
else
 cout << "how about them apples?"<< endl;

Combining Conditions

When you need to combine two are more conditions in a single if

or other logical statement, you use the logical and, or, and not

operators. In C++ you use these symbols rather than the and and

or operators Python expects.

&& logical And

|| logical Or

! logical Not

In C++ we would write

int pears = 2;

if ((apples > berries) || (pears < berries))
 cout <<"enough fruit" <<endl;

The Most Common Mistake

Since the “is equal to” operator is “==” and the assignment

operator is “=” look very similar, they can easily be misused. If

you write

Making Decisions 62

//incorrect use of = sign
if (apples = berries)
 cout << "false positive" <<endl;

instead of

//correct use of = sign
if (apples == berries)
 cout << "same number of each" <<endl;

The first case is an error in Python, but legal in C++ because it

sets the value of apples to the value of berries. Since the result

is non-zero, this is treated as true. This can lead to some

confusion in your program, and some IDEs may flag it as a

possible error.

Comparing strings

In C++ you can compare strings alphabetically using the same

logical symbols. The system compares the strings character by

character until there is a difference. If they are the same but one

us longer, it is the greater. The comparison is only useful if the

strings you are comparing are of the same case, so you usually

reduce both strings to lowercase before the comparison:

string apple = "apple";
string moreapples = "apples";
if (moreapples > apple)
 cout << "bigger"<<endl;

A ticketing program

Let’s write a program to determine ticket prices by age. It

illustrates how to do a series of if-else if comparisons ending

with a final else.

• Ages 6 and under get in free

• Ages 7 to 17 get a student rate

• Age 18 to 59 pay the adult rate

• Ages 60-79 pay the senior rate

Making Decisions 63

• Ages 80 and above get a special, discounted rate

int main() {
 // if else demo using ticket prices
 int age = 22; //start with a non zero age.
 while (age > 0) {
 cout << "Enter age :";
 cin >> age;
 int price = 35;
 if (age <= 6)
 price = 0; //toddlers are free
 else if ((age > 6) && (age <18))
 price=15; //student price
 else if ((age >=18) && (age < 60))
 price = 35; //adult
 else if ((age >=60) && (age <80))
 price = 30; //senior
 else
 price = 20; //super senior

 cout << "Price is :"<<price <<endl;
 }
 return 0;
}

This little program runs until you enter an age of 0 or less.

The switch statement

The switch statement allows you to do a set of tests on integers

or characters and execute code based on the value. It doesn’t

allow ranges or strings, however, but it can be very useful when

you want to distinguish small whole numbers. It is a simpler

ancestor of Python’s match statement, but can be helpful, for

example, in distinguishing one character commands.

It has the form

switch (num) {
 case 1:
 statement1;
 break;
 case 2:

Making Decisions 64

case 3:

 statement2;
 break;
 default:
 statementdeflt;
}

There can be one or more statements in each case since each case

is terminated with a break statement. You can also have several

cases that call the same statement as we show for statement2.

For a working example, let’s redo our ticketing program using

single character commands for each age group:

• C for child

• Y for youth

• A for adult

• S for senior

• 8 or o for 80 or over

Here’s the entire program:

int main() {
 char c = 'a';
 //get the first character of whatever is entered
 while (c != 'q') {
 cout << "Enter age group: (c, y, a, s, o) : ";
 string ageGroup= "a";
 int price = 0;

 cin >> ageGroup;

 if (ageGroup.length()>=0) {
 //convert to lowercase
 c = tolower(ageGroup [0]);
 }
 switch (c) {
 case 'c': //child is free
 price=0;
 break;
 case 'a': //adult
 price = 35;
 break;
 case 'y': //youth
 price=15;

Making Decisions 65

 break;
 case 's': //senior
 price = 30;
 break;
 case 'o': //octogenarian
 case '8':
 price = 20;
 break;
 default: //everyone else
 price = 35;
 }
 cout << "Price=" << price << endl;
 }

Break and continue

Like Python and Java, C++ has the break and continue

statements that allow you to jump out of the middle of loops. If

you agree with the principles of structured programming, then a

loop should have only one entrance and one exit point, the break

and continue are confusing additions to the language.

• Break jumps completely out of the loop to the next

statement, and

• Continue jumps to the bottom of the loop no matter what

Let’s look at a couple of examples. This program exits the

summation loop as soon as the sum exceeds 15, producing a sum

of 19.

double xarray[] ={5, 7, 4, 3, 9, 12 ,6};

double sum = 0;

for (double x: xarray) {

 sum += x;

 if (sum > 16) {

 break;

 }

}

cout << "Sum1 = " << sum <<endl;

Making Decisions 66

This code does the same thing, but uses a quit flag to decide the

exit form the while loop:

//alternate approaches
bool quit = false;
sum =0;
int i = 0;
while (! quit) {
 sum += xarray[i++];
 quit = sum > 16;
}
cout << "Sum2 = " << sum <<endl;

This is much cleaner and more readable. And to simplify this

further, you could have written this more directly as:

sum =0; i=0;
while (sum <=16) {
 sum += xarray[i++];
}
cout << "Sum3 = " << sum <<endl;

All three examples give the same result, and the last two are

surely clearer.

We might use the continue statement to skip an element in an

array:

//continue statement
for (i=0; i< size(xarray); i++) {
 if (i ==4) continue; //skips index 3
 cout << xarray[i]<<" ";
}
cout <<endl;

This one skips element 4, the 5th member, the number 9. The

resulting printout is

5 7 4 3 12 6

A cleaner way to write this is to just skip the value 9:

Making Decisions 67

for (double x: xarray) {
 if (x !=9) cout << x <<" ";
}

This gives the same answer and is much clearer.

The ornery ternary operator

C++ and Java (but not Python) also feature the ternary operator

which allows you to make decisions in a single statement. It is

mostly of historical interest, since it is pretty hard to read and

decipher. It has the form:

variable = (expression) ? var1 : var2;

If the expression is true, the variable is assigned the value of

var1 and if false it is assigned the value of var2. It is exactly the

same as

if (expression) {
 variable = var1;
}
else {
 variable = var2;
}

Here’s an example:

int main() {
 int berries =100;
 int beans = 50;

 int produce = (berries > beans) ? berries : beans;
 cout <<"produce is: "<< produce << endl;
 return 0;
}

Since this is exactly the same as the more readable:

if (berries > beans)
 produce = berries;

Making Decisions 68

else
 produce = beans;

cout <<"produce is: "<< produce << endl;

we never use it. This statement is of historical interest, when

compilers were less sophisticated, but today compilers produce

the exact same code for both code snippets. The ternary operator

is great fun in producing “obfuscated C code,” however.

Example programs on GitHub

• Decisions.cpp – examples of if-else if-else code

• Ticketages.cpp – example of ticket age code

• Switcher.cpp – switch examples

• Breakcont.cpp – illustrates break and continue

• Ternary.cpp – ternary operator example

Functions 69

6. Functions

Functions are a significant part of C++ and most other

languages. They are units of code that carry out a specific set of

operations. And while functions can be called many times

throughout a program, there are plenty of cases where a function

is called just once, but conveniently groups a set of operations

that you need to call while starting up a program.

Functions are usually called with one or more arguments and

may return some value when they exit. To declare a function,

start with the name of the function followed by parentheses. The

entire function is enclosed, of course, in braces. Most

development systems indent the code inside the function much

as they do the contents of a loop. Let’s write a really simple

function first, that calculates the square of a number:

//square the argument and return it
double sq(double x) {
 double y = x * x; //create the square
 return y; //and return it
}

Note that functions that return a value have their type declared

first thing, followed by the function name and then the

parentheses, which may contain one or more arguments, each

with their type. Functions begin at the opening brace and end at

the closing brace. If they return a value, they use a return

statement.

The variable y inside the function is a local variable. It has no

existence outside the function’s braces. And in fact, in this

simple case, you could just omit it:

//square the argument and return it
double sq(double x) {
 return x * x; //and return it
}

 Of course, functions can call other functions. We could create a

cubed function that calls the sq function:

Functions 70

//cube the argument and return it
double cube(double x) {
 double y = sq(x);
 y = y * x; //create the cube
 return y; //and return it
}
Then we call those functions from our main program:
int main() {
 double asqd = sq(12.0);
 double cubed = cube(12.0);
 cout << asqd <<" "<< cubed<< endl;
}

Function order

But C++ has a particular rule about the order of such functions:

1. Generally, the main function must come last.

2. If one function calls another function, that second

function must already have been declared in your code.

In other words the C++ compiler builds a symbol table in the

same pass as the compilation, and it must have already

encountered any additional functions. So, in this case, the

functions must appear in the order:

• sq()

• cube()

• main()

So cube can call sq but not the other way around, and main can

call both. We’ll see how you work around this issue shortly.

Overall, our little program looks like this:

using namespace std;

//square the argument and return it
double sq(double x) {
 double y = x * x; //create the square
 return y; //and return it
}

//cube the argument and return it
double cube(double x) {

Functions 71

 double y = sq(x);
 y = y * x; //create the sube
 return y; //and return it
}

int main() {
 double asqd = sq(12.0);
 double cubed = cube(12.0);
 cout << asqd <<" "<< cubed<< endl;
 return 0;
}

Polymorphism in functions

You can have more than one function with the same name as

long as the arguments are different in type or number. So you

could also write:

int sq(int x){
 return x*x;
}

and that function will not collide with the double version, since

the arguments are different. In C++, unlike Python, the function

signature include the types and number of arguments, and they

can co-exist as long as the signatures differ.

Function prototypes

You could create a power function, and then have the square and

cube call it:

double power (double x, int pwr) {
 double y=1;
 for (int i=1; i<= pwr; i++){
 y =y * x;
 }
 return y;
}

But eventually you are going to be in the position where several

functions call each other, and there is no obvious order to put

them in so each knows about the others.

Functions 72

In this case, we resort to function prototypes. We simply declare

all of the function names and types at the beginning of the

program, but without the function body:

double sq(double x);

double cube(double x);

int sq(int x);

double power (double x, int pwr);

Then you can place the functions anywhere you want, usually

after the main function. This way every function, including

main knows about every function in the program.

Passing arguments to functions

If we create the function sq1, which operates on its argument:

double sq1(double x) {
 x = x*x;
 return x;
}

 we appear to be changing the argument itself. But if we look at

the result of this simple call:

double x =12;
double y = sq1(x);
cout << "y="<<y<<" x="<<x<<endl;

The resulting output is:

y=144 x=12

In other words, even though we changed x inside our sq1

function, x in the calling program is not changed. This is true in

Python as well, and in both cases it is because x is copied into

the function. So the value of x is passed in, not the original x

variable in the calling program. This is referred to as call by

value because the variable’s value is passed in, not the variable

itself.

Functions 73

In Python, simple variables are always passed by value, and

larger mutable objects are passed by reference.

This is not true in C++. All variables other than arrays are copied

into the function, and arrays are actually pointers as we’ll see

next.

Default arguments

You can also create functions with default arguments. For

example:

void errmsg(string text ="error in program") {
 cout <<text<<endl;
}

If you call this function with no arguments, it uses the default

value of text shown in the function declaration.

errmsg(); //prints out “error in program”

But if you call this function with a new message

errmsg("both arguments are zero");

it prints that out instead,

You can do this with numeric arguments as well:

double area(double x, double y =0){
 double retval = 0;

 if (y !=0) retval= x*y;
 else retval= x*x;

 return retval;
}

Then a single argument returns a square and two arguments

returns their product:

Functions 74

cout << area(12,14) << endl; //product
cout << area(12) << endl; //square

Using constant declarations

You already know that you can declare a value as being constant

using the const declaration:

const ultimate = 42;

But you can use this same declaration to indicate that some

function arguments cannot be changed. Suppose you wanted to

pass an array to a function and have it compute the mean value.

If you declare that the array is a constant, your function cannot

change any members of the array:

double meanValue(const double x[], size_t size) {
 double sum = 0;
 for (size_t i=0; i <size; i++) {
 sum += x[i];
 }
 //x[0] = -1; //read only variable--error
 return sum / size; //calculate average
}

In fact, if you try to set an array value as we show in the

comment, the compiler will flag this as an error because the

array is now read only. You can do the same kind of things with

class members and entire classes as we will see shortly.

It is relatively uncommon for programmers to write functions

which change their arguments. Instead, functions return values.

For this reason, the const declaration is frequently omitted. But

if you are writing code others may use, it is wise to include them.

Example programs

• functs.cpp – illustrates sq and cube functions

• funcproto.cpp – shows how to use function prototypes

• funcdefault.cpp –shows default arguments

• constExample.cpp – the mean value example using
const

Using Pointers 75

7. Using Pointers

Pointers appear promiscuously in the C++ and C languages and

are variables containing the address of some other variable or

structure. They are particularly useful when you want to pass a

large object without the overhead of copying it.

While the idea of pointers seems daunting to some, we can cover

it in three lines. Suppose you create a string object

string mtb = "meatball";

and want to get its address. We use the reference operator or

ampersand:

string* pmeat = &mtb; //pointer to string

The new variable pmeat is a reference or pointer to the mtb

variable and has the type “string *” which means pointer to

string.

Now, if we want to get the value of that variable, we use this

same *-operator to dereference the pointer, getting back the

original contents:

cout << *pmeat <<endl; //print out the string text

Here we see the “*pmeat” means get the value the pointer

points to. And if run this C++ will indeed print out

meatball

as you expect.

To summarize:

• ‘&’ gets a pointer to a variable.

• ‘*’ gets the value pointed to by the pointer (or

dereferences it.)

Using Pointers 76

The only point of confusion is that C++ also uses the “*” symbol

in declaring a variable’s type.

double* pval;

means that pmeat is a pointer to a double value. You can also

write this as

double *pval;

which has exactly the same meaning.

Arrays and pointers

If you create an array of doubles, like this

double xarray[] = {12,14,15,16,20};

the array name xarray is really a pointer to the memory the

begins the storage of the array. Here there are 5 8-byte double

precision numbers stored in 40 consecutive bytes.

So you could copy that pointer, and then increment it to point to

each of the 5 elements:

double* px = xarray;
for (int i=0; i<5; i++) {
 cout << *px++ <<" "; //array pointer incremented
}

In the above example, px is a pointer to the beginning of the

array, just as xarray is. But if we increment it, it will point to

each successive data element in the array. And the size of that

increment is determined by the data type. So *px points to the

current array element, and if we increment after we use it, it will

then point to the next number.

The loop prints out the result:

12 14 15 16 20

Using Pointers 77

by moving the pointer through the array.

Calling functions

We have already seen that a function like this one

//call by value.
// Changes only within the function
void getReal(double x) {
 x=15; //changes only inside function
}

does nothing to the calling parameter. If you call the function

double y {172.6};
getReal(y); //pass by value

the variable y is unchanged. This is true of all single-value

variables.

But, if you pass a pointer to y into this function:

void getPreal(double* px) {
 *px = 22; //changes the calling parameter
}

and call the function with a reference to y,

getPreal(&y); //pass by reference

the value of y in the calling program is changed, because you

dereference the pointer with that “*” so you are changing the

original calling program’s variable. In other words, *p points to

the variable in the calling program, and you can change it from

within the function. This is called call by reference.

In this simple case, this just looks malicious, but in real

programs that variable might be an instance of a class, and it is

not unreasonable that a function might want to change some

value inside a class. So, this is much more useful than it first

might seem.

Using Pointers 78

Functions and Arrays

If you pass an array into a function, you are passing in the

pointer to the beginning of the array. Using the same xarray we

created above, we might want to call this function:

changeArray(xarray);

And here is the function

void changeArray(double *xa){
 xa[4] = 42.0; //change one value
}

The xarray variable points to the beginning of the array, so we

can use the above pointer to form the array expression. In fact,

we could also add 4 to the pointer to get the same result:

*(xa+4) = 42.0;

You could also create a function that has the array itself as an

argument:

void changeAnArray(double xarray[]){
 xarray[3]=666;
}

But it is actually just another way of writing the same thing.

One problem with passing arrays into functions, is that only the

pointer to the start of the array is passed in. There is no

information on the array’s actual size, and while the compiler

will let you write:

void changeAnArray(double xarray[]){
 xarray[300]=666;
}

this will fail at run time because that is probably outside the

bounds of the array. One way to get around this is to pass the

array size into the function as well:

Using Pointers 79

void changeArray(double *xa, size_t size){
 xa[4] = 42.0;
}

Of course, you must then check the index you use against that

size:

if (index < size) {
 xa[index] = 42.0;
}

But, you can get around all of these restrictions by using vectors

instead of arrays. Vectors carry their size information (which

may expand as needed) along with them.

If you create a vector and pass it to a function that changes

values in it:

vector <int> v = { 3,6,7,8,12 };
changeVec(v);

and that program changes the value of one element:

void changeVec(vector<int>px) {
 if (2 < px.size()) {
 px[2] = 123;
 }
}

the resulting vector is copied into the changevec function and

only that copy is changed. The vector in the calling program is

unchanged.

Obviously copying large vectors around isn’t ideal, but if you

send a pointer to the vector into the function, it changes the

original vector:

void changeVec(vector<int>& px) {
 if (2 < px.size()) {
 px[2] = 123;
 }
}

Using Pointers 80

C strings and pointers

In the C language, strings were represented as an array of

characters, terminated by a zero or null character. For example:

char greeting[6] ={"hello"}; //C string is an array

The actual array size must be one greater than the number of

characters to make room for the ‘\0’ terminating character. And

just as with the numeric arrays we’ve been dealing with, the

address of that string is a pointer to that array. So you could print

out the string a character at a time using a pointer:

char* p1 = greeting;
for (int i=0; i<5; i++) {
 cout << *p1++;
}
cout <<endl;

Now, by contrast, strings in C++ are actual classes and you can

print them out without much thought. However, if you come

across some old function that requires a C string, you can get one

using the c_str() method:

//a C++ string
string cpstring("This is a C++ string");
cout <<cpstring <<endl;

//get the C string within
const char* cpp = cpstring.c_str();

for (size_t i=0; i< strlen(cpp); i++) {
 cout << cpp[i];
}
cout <<endl;

However, the C-string you get is constant or immutable. To get

that same C-string so you can alter it, you can use the data()

method:

Using Pointers 81

//get a mutable version of that C-string

char* vcpp = cpstring.data();

vcpp[2] = 'u'; //change one character
cout <<vcpp <<endl;

Remember that C-strings are mainly of historical interest, and

you will seldom use them. The preferred C++ string is the string

class.

Example code on GitHub

• Pointers.cpp – contains all the code examples in this chapter

• ChangeVec.cpp – changes vector inside function

• Charpointer.cpp – illustrates C string

Using Pointers 82

Sets, tuples and maps 83

8. Sets, tuples and maps

Sets

Sets in C++ are very much like those in Python. The difference is

that the members must all be of the same declared type. The

main use of a set is to create collections of items which have no

duplicate members. If you try to add another item to a set that

already holds that item, it will not be added.

There are actually two set objects in C++: set and

unordered_set. The usual set is always stored in ascending

order, while the unordered_set which is backed by a hash table

for controlling duplicates. For small sets, it doesn’t make much

different which you use. For large sets, the unordered_set may

run faster. Be sure to run a timing test on your data to be sure.

Creating sets is incredibly simple.

set<int> cset={2,5,12}; //create a set
cset.insert(5); //add a duplicate
cset.insert(6); //add a new number

Now, if we print out that set:

//print out set contents
for(int s: cset){
 cout << s <<" ";
}
cout << endl;

We will find that the set only contains one 5.

2 5 6 12

If we want to find out if the set contains a particular value, the

find method will do it for you.

Sets, tuples and maps 84

//check to see if set contains a 6
int num = 6;
auto it = cset.find(num);
if (it != cset.end()){
 cout << num <<" is in the set"<<endl;
}
else
 cout << num << "is NOT in the set" <<endl;

The find method returns an iterator which points to the position

of that value in the set. But if that value is not found in the set,

the iterator points to the end of the set. Hence by comparing with

the end iterator, you determine whether the value was found or

not.

Sets are not limited to integers, of course. They can be made up

of strings:

set<string> stSet{"Fred", "Nora", "Zoltan"};

or doubles:

set <double> dSet {22.4, 6.02e23,1.008};

Merging sets
Merging sets is not too difficult, although it should be easier. You

create the sets and then insert all of the second set at the end of

the first set.

set <string> fruits{"apples", "pears", "cherries"};
set <string> piestuff{"nuts", "berries", "apples"};
set <string> pie = fruits ;
pie.insert(piestuff.begin(), piestuff.end());

Merging these two creates a set with 5 members, since apples

occurred twice:

apples berries cherries nuts pears

Sets, tuples and maps 85

There are articles on how to compute the intersection of two sets

that you can find on line, but they are too complex to take up

here.

Tuples

Tuples in C++ are much like those in Python, a collection of

values of different types that cannot be changed or added to

(immutable). They are a convenient way to return more than one

value from a function and you can create them rather simply.

First, you can declare a tuple and all its types like this:

tuple <int, string> breadTuple(12, "loaves");

and secondly, you can use the make_tuple function to create the

tuple, and deduce the types in the process:

auto newTuple =

 std::make_tuple ("Sarah", "Snoody", 14, 'y');

Note that we’ve used the auto type to tell the compiler to create

the needed type without you spelling it out. But the main thing

about the statement shows how simple a tuple really is to create.

However, fetching values from a tuple is unnecessarily

complicated. You cannot use a variable to specify the index into

the tuples, here numbered 0 to 3. Instead, you must fetch them

using the constants 0 to 3:

// You must access the tuples with a constant

index, not a variable

cout<< get<0>(newTuple) <<" ";

cout<< get<1>(newTuple) <<" ";

cout<< get<2>(newTuple) <<" ";

cout<< get<3>(newTuple) <<" ";

cout << endl;

Sets, tuples and maps 86

Fortunately, there is a convenient workaround. You create a set

of variables representing the values within a tuple:

string frname, lname;

int age;

char honors;

Then you can use the tie function to copy the contents of the

tuple into those variables:

//copy the tuple members into the variables

// to make them easier to print out or use.

std::tie(frname, lname, age, honors) =

 newTuple;

Or, starting in C++ 17, you can copy them into new variables

created on the spot as you see here:

auto [frname1, lname1, age1, honors1] =

 newTuple;

In this case, you don’t declare the variables in advance: they are

created with the proper types because we used auto to say that

we want the compiler to deduce the types of those variables.

One of the most controversial parts of discussing tuples is how to

pronounce them. Now Easy Reader would probably suggest too-

pul, since the first syllable ends in a vowel, and in many cases in

English that means the vowel should be long. But computer

geeks have decided it should be pronounced tuh-pul, as if there

were two p‘s instead of one. The rationale for this is that triple,

sextuple and septuple are pronounced with a short ‘u’ so it

should be, too. This of course ignores quadruple and octuple

which usually have a long vowel pronunciation. But you can

pronounce it any way you want. If in spoken discourse, someone

corrects you, just remember that if the British can pronounce the

surname Cholmondeley as “Chumley,” all bets are off.

Sets, tuples and maps 87

Maps and Dictionaries

C++ does not have a dictionary type like Python does, but the

map type is very similar. While Python dictionaries are usually

made up of a string key and a string value, you have more

flexibility in C++, since you must declare the types of the key

and value in advance:

map<string, string> dbanswer;

Then you can insert values into the dictionary like this:

dbanswer.insert(pair<string, string>("frname",

 "Sally"));

dbanswer.insert(pair<string, string>("lname",

 "Splurge"));

dbanswer.insert(pair<string, string>("score",

 "98"));

and if you want to fetch a value using the key, you simply fetch it

using the key:

cout << dbanswer["score"] << endl;

If you aren’t sure that the map contains a value with that key,

you can check it using find. If find returns an iterator pointing to

the end, the key is not found.

string keyScore = "score";
auto it = dbanswer.find(keyScore);
if (it != dbanswer.end()){
 cout << dbanswer[keyScore] << endl;
}

You can also print out the entire dictionary entry in a simple loop

like this:

string keys[] = {"frname", "lname", "score"};
for(int i=0; i<3; i++){

Sets, tuples and maps 88

 cout <<keys[i] << ": " << dbanswer[keys[i]] << endl;
}

A more compact way of adding a list of pairs to a map is shown

below.

map<string,string> states;
states["AR"] = "Arkansas";
states["AK"] = "Alaska";
states["CA"] = "California";
states["CT"] = "Connecticut";
states["MO"] = "Missouri";
states["KS"] = "Kansas";

cout << "CT: "<<states["CT"]<<endl;

It would be possible to create a map within a map where the

inner map contains other state properties, like capital and

population, and then create an outer map of these property maps,

but it is probably better to create little State classes instead. We’ll

take up classes in the next chapter.

Example programs in GitHub

• setsTuples.cpp – examples of sets and tuples

• maps.cpp – examples of using maps

• setandTuple.cpp – shows creation of tuples.

Classes and OOP 89

9. Classes and OOP

Classes in C++ are similar to the ones you learned in Python, but

they are more flexible than Python’s are. Quite a few basic C++

books and tutorials put off covering classes until so late in the

book that some newcomers have gotten the idea that classes are

somehow optional add-ons, and they put off learning them at all.

But they have gone at this wrong-way round. Almost every

component of C++ is an object.

• Objects hold data and have methods to access and

change that data

For example, strings, tuples, sets and maps are all objects, as are

complex numbers. And they all have functions associated with

them called methods that allow you to get and change that data.

The whole idea of data inside classes is called data

encapsulation. You don’t need to know how the data are

represented or computed: you just use the getter and setter

methods to obtain and store that data.

But how do you make your own objects?

A Rectangle class.

You create objects by first defining a class which describes that

object. Let’s start with a simple example that draws a rectangle.

To create a class you using the class keyword followed by a

name.

class Rectangle {
 int width, height;
public:
 Rectangle(int w, int h) {
 width = w;
 height =h;
 }
};

Classes and OOP 90

Much like the similar Python class, this Rectangle class begins

with a class declaration followed by the class name. It is neither

customary nor frowned upon to capitalize class names. It does

help set them off in the code, though. The code in the class

begins after a left brace and ends with a right brace followed by a

semicolon.

The class instance variables are usually declared first and are by

default private whether you declare them as private or not. This

means that they can only be accessed by code within the class. If

you want to derive new classes from this class and want them to

be able to access these variables, you declare them as protected

instead. In C++ it is conventional to keep all these variables

private or protected and allow programs to obtain those values

with get methods like this one:

int getWidth() {
 return width;
}

In C++, the constructor copies the variable values into the class

instance, much like the __init__ method in Python. The

constructor has the same name as the class but copies the

arguments into the variables width and height.

public:
 Rectangle(int w, int h): {

width = w;
height = h;

 }

You can also use the slightly shorter brace notation to indicate

copying these variable values:

public:
 Rectangle(int w, int h): width{w}, height{h} {
 }

Classes and OOP 91

Our Rectangle class can print out a rectangle made up of

asterisks and spaces. We add the spaces in the top and bottom

lines to match the spacing between lines. We could print the top

(and bottom) lines of the rectangle by printing out an asterisk

followed by 2 spaces for each element of the width:

void drawTop() {
 for (int i=0; i<width; i++) {
 cout << "* ";
 }
 cout <<endl;
}

But it might better to make that asterisk and spaces string into a

constant, along with 3 pure spaces we’ll need for the middle

lines:

const string star="* ";

const string spaces =" ";

Then our drawTop method beomes:

void drawTop() {
 for (int i= 0; i < width; i++) {
 cout << star;
 }
 cout << endl;
}

and we draw the sides with a similar method:

void drawSides() {
 for (int i=0; i<height-1; i++) {
 cout << star; //left side
 for (int j=0; j<width-2; j++){
 cout << spaces;
 }
 cout << star << endl; //right side
 }
}

and we can draw the whole rectangle with this simple method:

Classes and OOP 92

//draws whole box
void draw() {
 drawTop(); //top
 drawSides(); //sides
 drawTop(); //bottom
}

And here is the entire 5 x 8 rectangle:

* * * * * * * *
* *
* *
* *
* *
* * * * * * * *

Inheritance

Drawing a square is, of course, a special case of Rectangle. We

can derive a Square class from the Rectangle class by simply

passing the side dimension into the constructor twice:

//square derived from Rectangle
class Square:public Rectangle{
public:
 Square(int size):Rectangle(size, size){}
};

And that’s it. That’s the whole class. The size argument is passed

to the Rectangle constructor. Everything else is the same! Here’s

the proof:

* * * * *
* *
* *
* *
* *
* * * * *

Classes and OOP 93

More useful classes

Rather than deal with cute Dog or Car classes, let’s instead get to

work with a useful class describing an employee. Our employee

class will contain the employee’s name, salary, benefits, and an

ID number. Here’s the beginning of the C++ class for an

Employee:

class Employee {
private:
 //private variables
 int idNum;
 string frname, lname;
 double salary;
 double benefits;
public:
 //constructor initializes variables
 Employee(int id, string frnm, string lnm,
 double sal, double ben = 1000){
 frname = frnm;
 lname = lnm;
 idNum = id;
 salary = sal;
 benefits = ben;
}

 //return salary
 double getSalary() {
 return salary;
};

The public section of the class contains all the methods that

other classes can access and, most important, contains the

constructor. Much like the Python __init__ method, the

constructor sets the values of many or most of the class’s private

variables as you see above. There is a second style of syntax for

the constructor that is a little more compact:

public:
 Employee(int id, string frnm, string lnm, double sal):
 idNum{id}, frname{frnm}, lname {lnm}, salary{sal}
{
}

Classes and OOP 94

Note that these values are assigned to the class variables after a

colon and before the open left brace of the (now empty) body of

the constructor.

You can even use this brace construction to initialize the class

variables so that have actual values ahead of time:

int idNum{0};
string frname{NULL}, lname{NULL};
double salary{0.0};
double benefits{1000};

These are called braced initializers and are in most cases the

same as using equals signs. The one difference is in the case

when you inadvertently write an initializer statement that

narrows the value. For example:

int x = 4.5; //always legal in C++
int x {4.5}; //compiler will issue a warning

If you convert a double or float to an integer, this might be a

mistake, and the compiler will issue a warning if you use the

braced initializer.

Of course, you can have default values in the constructor as well

as in any class methods. For example, the benefits value might

have a default value like this:

Employee(int id, string frnm, string lnm,
 double sal, double benefits = 1000) {

but this presents some style problems. We used abbreviated

names for the other variables, but for one whose name might be

spelled out in the calling program

Employee emp1 = Employee(id++, "Susan", "Sugar",
 5000, benefits=1000);

Classes and OOP 95

we want to use that full name. Then, what do we do with the

class member variable names? One solution is to prefix the

internal member names with an m_ as we do here:

class Employee2 {
private:
 int idNum{0};
 string m_frname{NULL}, m_lname{NULL};
 double m_salary{0.0};
 double m_benefits{1000};
public:
 Employee2(int id, string frname, string lname,
 double salary, double benefits=1000) :
 idNum{id}, m_frname{frname}, m_lname{lname},
 m_salary{salary}, m_benefits{benefits} {
 }

 //return the current salary
 double getSalary() {
 return m_salary;
 }

 //return the name
 string getName() {
 return m_frname + " " + m_lname;
 }
};

This makes using those names internally a little more awkward

but makes the names of the variables in the constructor more

obvious.

Another approach is to use the “hidden” this pointer which

points to that class instance. It is pretty much like the self

variable in Python except that it is a pointer:

Employee(int id, string frnm, string lnm, double sal,
 double benefits = 1000) {
 frname = frnm;
 lname = lnm;
 idNum = id;
 salary = sal;
 this->benefits = benefits;
}

Classes and OOP 96

You could do this for all the variable names or just for the default

ones, as you prefer. But you must make the names in the

constructor argument and the names of the internal variable

somehow different.

Deriving new classes

Now let’s consider some other types of employees. For example,

we might have temporary employees who get reasonable

salaries, but no benefits. We can derive a new TempEmployee

class in just a few lines:

class TempEmployee : public Employee {
public:
 TempEmployee(int id, string frnm, string lnm,
 double sal) :
 Employee(id, frnm, lnm, sal) {
 benefits = 0; //temp employees no benefits
 }
};

That’s the whole class. The only difference is that the constructor

sets the benefits value to zero.

We might also have an Intern class, who not only gets no

benefits, but has a salary cap, since these are essentially trainees.

We do this by creating a little private capSalary method that sets

any salary proposed above 500 to 500.

void capSalary() {
 if (salary > 500) {
 salary = 500;
 }
}

So, our entire Intern class, which is also derived from the

Employee class makes two changes: benefits are zeroed out and

the salary is capped:

Classes and OOP 97

class Intern : public Employee {
private:
 //cap the salary at 500 no matter what was entered
 void capSalary() {
 if (salary > 500) {
 salary = 500;
 }
 }

public:
 Intern(int id, string frnm, string lnm, double sal) :
 Employee(id, frnm, lnm, sal) {
 benefits = 0; // no benefits either
 capSalary(); //cap the salary
 }
};

Public, protected and private inheritance

In the above examples (and most examples) we show the base

class name preceded by the public keyword.

class Intern: public Employee {

However, you can if you wish, use the protected or private

keywords to define the inheritance instead.

• In public inheritance, the base class public variables are

public in the derived class and protected variables are

protected in the derived class.

• In protected inheritance, base class public and protected

variables become protected in the derived class.

• In private inheritance, base class public and protected

variables are private in the derived class.

Note, however, that if you leave out that public modifier, it

defaults to private and your derived classes will not have access

to any of the base class variables.

Classes and OOP 98

Classes within a class

Now suppose we have a small group of employees and want to

display them or do some calculations on the group. It would be

nice we could create a class that represents all the employees.

This is just a simple as it seems: we just add each new employee

to an array, a vector or some other container, so we can run

through them quickly.

You might think that a vector of Employee objects would be just

the thing, but that stores copies of the Employee objects rather

than the originals. How do we solve this? By using pointers

some more. In fact, this is the most common use of pointers in

C++.

When we create an Employee object like this:

Employee emp = Employee(id++, "Susan", "Sugar", 5000);

the compiler reserves memory for that object at compile time,

and that memory is relinquished when the program exits.

But if you wanted to create pointers to a bunch of Employee

objects you could use the new operator which reserves that

memory at run time:

Employee* emp1 = new Employee(id++, "Susan", "Sugar",
 5000);

Here, emp1 is a pointer to the memory where that Employee

object is located. Then, if we wanted to keep an array of those

employees, those pointers would refer to the original objects and

not copies. As with the first approach, all that memory is

relinquished when the program exits. However, it could be that

recreating that list within some class would cause more memory

to be reserved. This could eventually eat up a lot of memory.

There are techniques for dealing with this that we’ll take up later.

Right now, we simply want to create an Employees class that

holds all the Employee objects. Inside the class, we’ll use a

Classes and OOP 99

vector to hold the list of pointers. Note that the addEmployee

method expects not an Employee, but a pointer to an Employee.

class Employees {
private:
 //contains an array of pointers to Employee objects
 vector <Employee *> employees;
public:
 //add a pointer to an Employee class to the vector
 void addEmployee(Employee* emp) {
 employees.push_back(emp);
 }
 //get the size of the vector
 int getCount() {
 return employees.size();
 }
 //get the pointer to the i-th Employee
 Employee* get(int i) {
 return employees[i];
 }
};

Finally our main method uses all these classes to create the list

and print it out. Note that you can create the employee pointers

one at a time as we illustrated above, or you can just create them

within your call to the addEmployee method:

int main() {
 Employees employees;
 int id = 1;
 Employee* emp1 = new Employee(id++,
 "Susan", "Sugar", 5000);
 employees.addEmployee(emp1);
 employees.addEmployee(new Employee(id++,
 "Sarah", "Smythe", 2000));
 employees.addEmployee(new TempEmployee(id++,
 Billy", "Bob", 1000));
 employees.addEmployee(new Intern(id++,
 "Arnold", "Stang", 800));

 for (int i=0; i< employees.getCount(); i++){
 Employee *emp = employees.get(i);
 cout << emp->getId()<<" "<< emp->getName() <<
 " " << emp->getSalary() <<" "

Classes and OOP 100

 << emp->getBenefit() << endl;
 }
 return 0;
}

Classes and headers

In this simple little program, we actually created 4 classes:

• Employee

• TempEmployee

• Intern

• Employees

And all of them are dependent on the Employee class being

defined first, since the Employees class contains instances of

Employee and Intern and TempEmployee are derived from the

base Employee class. Since these are relatively small, simple

classes, it is convenient to put them all in the same file, and as

long as the Employee class is defined first, everything will

compile as expected.

But it is quite common to have situations where keeping the

classes in that convenient order is much more difficult to

achieve. In that case, it is very common to create prototypes of

the classes at the top of the file, with the bodies of those classes

below main as we did for our function prototype.

Let’s take a look at the prototype for the Employee class:

class Employee {

protected:

 int idNum;

 string frname, lname;

 double salary;

 double benefits ;

public:

 Employee(int id, string frnm, string lnm,

 double sal,

 double benefits=1000);

 double getSalary();

Classes and OOP 101

 string getName();

 int getId();

 double getBenefit();

};

Note that all the public and private or protected methods are

listed but terminated with a semicolon and no braces. Then the

actual “guts” of the class are inserted below the main function:

//---Employee methods---

Employee::Employee(int id, string frnm, string

lnm, double sal,

 double benefits) {

 frname = frnm;

 lname = lnm;

 idNum = id;

 salary = sal;

 this->benefits = benefits;

}

double Employee::getSalary() {return salary; }

string Employee::getName() {return frname + " "

+ lname; }

int Employee::getId() {return idNum; }

double Employee::getBenefit() {return

benefits;}

Here we see that each method is prefixed by the class name and

two colons. Also, note that the default value for the benefits

parameter is not repeated. It is only shown in the prototype. This

makes sense, since the value must be known at compile time.

Here is the rather simple TempEmployee prototype:

class TempEmployee : public Employee {
public:
 TempEmployee(int id, string frnm, string lnm,
 double sal);
};

Classes and OOP 102

Note that the prototype does not include the inheritance relation

to Employee, nor how the values are copied into the class. This

takes place in the actual method section:

//---Temp Employee methods--
TempEmployee::TempEmployee(int id, string frnm,
 string lnm, double sal) :
 Employee(id, frnm, lnm, sal)
{
 benefits = 0; //temps do not get benefits
}

Here the inheritance structure is shown, and the setting of the

benefits parameter.

The Intern methods are shown in the prototype in a similar

fashion. The private capSalary method is shown but the details

are only shown in the method section:

class Intern : public Employee {
private:
 //cap the salary at 500 no matter what was entered
 void capSalary();

public:
 Intern(int id, string frnm, string lnm, double sal);
};

As before, the copying of values into the base class is only

shown in the methods section.

//----Intern methods-----
 //cap the salary at 500 no matter what was entered
void Intern::capSalary() {
 if (salary > 500) {
 salary = 500;
 }
}
Intern::Intern(int id, string frnm, string lnm,
 double sal) :
 Employee(id, frnm, lnm, sal) {
 benefits = 0; // no benefits either
 capSalary(); //cap the salary
}

Classes and OOP 103

The Employees class is similar.

Using Headers

All of the #include directives that start off C++ programs contain

prototype-like files for what ever class they refer to. Those that

are part of the standard C++ libraries have been precompiled for

faster access, and those include files are written inside greater-

then, less-than brackets like this

#include <string>

But for your own programs, you can make such include or

header files for your own classes and they are exactly the same

as the prototype files we wrote above. The only difference is that

for each class, you make header file, such as “Employee.h” and a

cpp file containing body of those methods. You have to include

the appropriate namespace directives and any library include file

declarations as well. Here is the header for our Employee class:

#ifndef EMPLOYEEHEADERS_EMPLOYEE_H
#define EMPLOYEEHEADERS_EMPLOYEE_H
#include <string>
using namespace std;

class Employee {
protected:
 int idNum;
 string frname, lname;
 double salary;
 double benefits ;
public:
 Employee(int id, string frnm, string lnm, double sal,
double benefits=1000);
 double getSalary();
 string getName();
 int getId();
 double getBenefit();
};

#endif //EMPLOYEEHEADERS_EMPLOYEE_H

Classes and OOP 104

And here is the body file Employee.cpp:

#include "Employee.h"
//---Employee methods---
Employee::Employee(int id, string frnm, string lnm, double
sal, double benefits) {
 frname = frnm;
 lname = lnm;
 idNum = id;
 salary = sal;
 this->benefits = benefits;
}
double Employee::getSalary() {return salary; }
string Employee::getName() {return frname + " " + lname; }
int Employee::getId() {return idNum; }
double Employee::getBenefit() {return benefits;}

The interesting addition that IDEs like Visual Studio and CLion

make is some sort of #ifndef statement to keep the compiler from

reading the file in more than once if several others refer to it. In

CLion, they look like the Employee.h above. In Visual Studio, it

uses another approach by placing this single statement at the top

of each include file:

#pragma once

The main program

Now that we’ve taken this relatively simple program apart, the

main program is really just the code in main plus a bunch of

includes. Here is the resulting main program:

#include "Employee.h"
#include "Employees.h"
#include "TempEmployee.h"
#include "Intern.h"

using std::cout;
using std::endl;

Classes and OOP 105

using std::string;
using std::vector;

//----Main program starts here----
int main() {
 Employees employees;
 int id = 1;
 Employee* emp1 = new Employee(id++,
 "Susan", "Sugar", 5000);
 employees.addEmployee(emp1);
 employees.addEmployee(new Employee(id++,
 "Sarah", "Smythe", 2000));
 employees.addEmployee(new TempEmployee(id++,
 "Billy", "Bob", 1000));
 employees.addEmployee(new Intern(id++,
 "Arnold", "Stang", 800));

 for (int i=0; i< employees.getCount(); i++){
 Employee *emp = employees.get(i);
 cout << emp->getId()<<" "<< emp->getName() <<
 " " << emp->getSalary() <<" "<<emp->getBenefit()
 << endl;
 }
 return 0;
}

Summary of headers

As long as you are writing short, experimental programs, you

probably won’t have to make prototype headers very often, and

separate header files even less often. But you need to understand

that most larger programs take advantage of these features to

separate the various classes from each other.

Multiple Inheritance

Like Python, but unlike Java, for example, C++ supports

multiple inheritance, where you can create a new class that has

member methods (and variables) from two or more classes. As

this can quickly get very tangled, this feature, you need to use it

sparingly and thoughtfully. Most frequently, people create

classes having multiple inheritance when they want to create a

Classes and OOP 106

class having methods that already exist in another class. Often

this other class is more of an interface than a complex class, but

once you have created such a class, you can treat as a member of

either class hierarchy when convenient.

Let’s take a really elementary example. Suppose you have a few

employees that are really good a public speaking and represent

your company well. You could derive a new class directly from

Employee, or you could realize that you already have a Speaker

class you could use:

class Speaker {
public:
 void inviteTalk() {
 cout << "Can you give a talk next week?" <<endl;
 }
 void giveTalk() {
 cout << "Greetings and blah blah blah..."<<endl;
 }
};

Then you could create PublicEmployee class by deriving it from

both class hierarchies:

class PublicEmployee: public Employee, public Speaker {
public:
 PublicEmployee(int id, string frnm, string lnm, double
sal) :
 Employee(id, frnm, lnm, sal) {

 }
};

 Here we create an instance in the usual way:

PublicEmployee* pemp = new PublicEmployee(id++,
 "Elizabeth", "Impressive",6000);
pemp->inviteTalk();

And it is that easy to create a class with multiple inheritance.

Note that you must make sure to declare the inheritance from

both parent classes as public in order to use those public methos.

Classes and OOP 107

Polymorphism

Polymorphism is jaw breaking term for objects that change form.

For example, our TempEmployee class changes form from the

base Employee class by zeroing out the benefits value. This is

essentially method polymorphism.

But another type of polymorphism, often called overloading is

common in C++, and cannot easily be achieved in Python. To

take a trivial example, suppose we made a class that has a

method for adding two numbers together.

class Adder {
public:
 double addNums(double x, double y) {
 return x + y;
 }
};

Then, we could call it to carry out addition pretty simply:

Adder adder; //create instance of Adder
cout << adder.addNums(12.1, 14) << endl; //add 2 nums

But now, suppose we get string values from some visual entry

field and wanted to add those. The method would have to invoke

the string conversion function stod (string to double). Here’s

such a method:

//add numbers in two strings
double addNums(string x, string y) {
 return stod(x) + stod(y);
}

We would then call it by:

cout << adder.addNums("22.4", "1.008") << endl;

But note that this method has the same name and the same

number of arguments: just different types of arguments. This is

legal in C++ (although not directly in Python). And there could

be two more for one string and one double as well:

Classes and OOP 108

double addNums(string x, double y) {
 return stod(x) + y;
}

double addNums(double x, string y) {
 return x + stod(y);
}

These are all legal and compile properly. In fact, we could

change the number of arguments as well:

double addNums(double x, double y, double z){
 return x + y + + z;
}

and call it by

cout << adder.addNums(122.3,303.4,45.6) << endl;

This kind of overloading is common in C++, and as you can see,

it can be pretty useful.

Virtual Functions

You can use the keyword virtual in C++ to indicate that

functions are to be inherited in derived classes. Suppose we

added the keyword to the getSalary() method in the Employee

class above:

class Employee {
protected:
 int idNum;
 string frname, lname;
 double salary;
 double benefits;
public:
 Employee(int id, string frnm, string lnm,
 double sal, double benefits = 1000);
 virtual double getSalary();
 string getName();
 int getId();
 double getBenefit();
};

Classes and OOP 109

This indicates that there may be some derived classes that

redefine that method in some way.

Then we could create a class called Contractor that returns some

fraction of the total salary. (The rest might go to his agency.)

The definition of that class shows that there is a new getSalary

method.

class Contractor:public Employee {
private:
 double rate = 0.85;
public:
 Contractor(int id, string frnm, string lnm,
 double sal, double benefits = 1000);
 double getSalary();
};

Then, the actual code for that method is somewhat different:

//reduce salary by “rate”
double Contractor::getSalary() {
 return salary * rate;
}

While that intent of virtual was to signal that certain functions

may be redefined in derived classes, it is actually no longer

necessary: that contractor code will work just fine without it in

the current implementations of C++. The only difference is that

if you declare a function to be virtual, its final implementation

isn’t resolved until run-time, which may make the program run

slightly slower.

Pure Virtual Functions

You declare what is called a pure virtual function by following

the declaration with a statement that it equals zero:

virtual double getSalary() = 0;

Classes and OOP 110

This statement means that this function does not exist in this

base class but will be filled in in derived classes. In this case the

base class is now abstract and cannot have any instances created.

In other words, this function is a abstract function that itself

cannot be executed. You can’t create an instance of a class with

such an abstract function. You can only derive new classes from

it that fill in that function. Those you can instantiate.

It’s not likely that you’d create a abstract function and class out

of our Employee class, because it doesn’t do anything very

useful. It is more likely that you use these pure virtual functions

to create classes where all or nearly all of the functions are

abstract. For example, in Chapter 13, we create a DButton class

where the only function is abstract:

//an abstract button class
class DButton : public wxButton {
protected:
 Builder* bld;

public:
 DButton(…) {
 this->bld = bld;
 Bind(wxEVT_BUTTON, &DButton::comd, this);
 }
//abstract method to be completed in derived classes
 virtual void comd(wxCommandEvent& event) =0;

And, in Chapter 23, we define the Bridger as an abstract class:

//abstract Bridge class
class Bridger {
 //add data to the other side of the bridge
 virtual void addData(Products* prod) = 0;
};

Classes and OOP 111

Static class members

This Adder class doesn’t really have to be instantiated as we did

in this example. We could make these methods static and call

them directly.

class Adder {
public:
 //static methods do not need a class instance
 static double addNums(double x, double y) {
 return x + y;
 }
 static double addNums(string x, double y) {
 return stod(x) + y;
 }
 static double addNums(string x, string y) {
 return stod(x) + stod(y);
 }
 static double addNums(double x, string y) {
 return x + stod(y);
 }
 static double addNums(double x, double y, double z){
 return x + y + + z;
 }
};

To call these methods, we don’t have to create an instance of

Adder. Instead, we use the member-of symbol (::).

cout << Adder::addNums(12.1, 14) << endl;
cout << Adder::addNums("22.4", "1.008") << endl;
cout << Adder::addNums(123.4, "6.02") << endl;
cout << Adder::addNums(122.3,303.4,45.6) << endl;

Note that these static class members do not have access to any

instance variables the class may hold because they do not have a

hidden or visible this pointer to reach them. Static class methods

are useful for creating generally useful functions outside the

class: they are not members of class instances.

Classes and OOP 112

Friend declarations

Early on in the design of C++, it seemed as though you might

need to get at some of those private variables inside a class from

time to time. But, as it turns out, you just don’t need that feature.

However, the friend declaration remains in the language. You

can create a function outside a class and have that class declare

that function as a friend. In that case the function can read and

change those private variables. You can also declare a whole

other class as a friend and it, too, will have access to the class

that declared it a friend. This, of course, violates the whole idea

of data encapsulation, and it would mean that such function or

class would have to know exactly how data are represented in

the friending class. We don’t recommend this at all.

Constant classes

Suppose we consider our familiar Rectangle class for a moment:

class Rectangle {
private:
 double width;
 double height;
public:
 Rectangle(double w, double h):width{w}, height{h}{}
 void setWidth(double w){width = w;}
 void setHeight(double h) {height=h; }
 double getwidth() {return width;}
 double getHeight() {return height;}
 double getArea() {return width * height;}
};

You can use the const modifier to change values that go in and

out of this class. For example, you might want to make sure that

the area is returned as a constant:

double getArea() const {return width * height;}

Like many other such modifications, they may not often be that

significant.

Classes and OOP 113

But suppose you want to make the whole class constant!

const Rectangle rect{22,34};

Once the constructor has run and initialized the constant class,

any attempt to modify the member variables will fail because

they are now constant. But for this to work, all of the getter

member functions must be labeled const as well, because the

member private variables are const as well. So, for the output

statement to work:

cout << rect.getArea()<<" "<< rect.getwidth()<<
 " "<<rect.getHeight()<<endl;

the getters must all be constantized, and the setters might as well

be removed because they can’t work when the private variables

are now constants. So, we have to modify our class as follows:

//void setWidth(double w){width = w;}
//void setHeight(double h) {height=h; }
double getwidth() const {return width;}
double getHeight() const {return height;}
double getArea() const {return width * height;}

Example Programs

• textRectangle.cpp – draws rectangle and square with

asterisks.

• Employee.cpp – Employee and derived classes

• EmployeeProto.cpp – Using prototypes for the classes.

• EmployeeHeaders folder – Using header files and

separate class files

• PublicEmployee.cpp – illustrates multiple inheritance.

• addNumsPoly.cpp – 5 overloaded methods in Adder

• EmployeeVirual.cpp

• PureVirtualEmployee.cpp

Classes and OOP 114

• staticPoly.cpp – 5 static methods in Adder

• constclass.cpp – constant Rectangle class

Pointers and Memory 115

10. Pointers and Memory

This chapter deals with two ways to allocate memory: the old,

common method used in C and early C++ and the newer smart

pointer system that was introduced in C++ 11 (2011).

As we noted in the previous chapter, you can create space for

new variables or arrays at compi time or at run time. In the first

case, if you create an array at compile time:

double bigArray [1'000'000]; //huge static array

The space for this array is allocated on the stack, the same

memory where computation takes place. This reserves a lot of

memory for the whole program’s execution time, when you may

only need it for a little while. Note that we use the apostrophe as

a digit separator to make it clear how large the number is. It has

no computation effect.

Instead, it is better to create the memory array in free memory,

often called the “heap.”

//create a dynamic array on the heap
double* pbig {new double [DIM]{}};

Now you can assign values to this array, using it just like any

other pointer:

double d =0;
for (size_t i=0; i< DIM; i++) {
 pbig[i] = d++; //convert to a double
}

But when you are done with this memory space, it is up to you to

release it. This wouldn’t matter in a small trial program that runs

through and exits, because all memory will be released when the

exit occurs. But in many C++ and C programs request memory

and forget to release it, leading to a gradual increase in memory

usage until the system could run out of memory.

Pointers and Memory 116

So, it is up to you to use the delete method to release any

memory you request. In this example, you would release that

pbig array with

//release double array
delete [] pbig;

You could also create your memory using a vector when you

need it.

//create a dynamic array
vector <double *> dubbles;
for (size_t i=0; i< 1'000'000; i++) {
 double* px = new double;
 dubbles.push_back(px);
}

Here we actually are creating a set of pointers to double values,

as you can see when we print some out.

for (size_t k=0; k<5; k++) {
 cout << k<<" "<< *dubbles[k]<<endl;
}

In this case, dubbles[k] is a pointer to the double precision

variable, so to print out that values, we print *dubbles[k].

Then, to release all those individual memory reservations, we

have to run through the whole vector and delete them:

//release memory from dynamic array
for (double* db:dubbles){
 delete db;
}

Classes and destructors

However, it is more common that you might need to keep track

of memory and manage it within classes. We have already seen

Pointers and Memory 117

in detail how class constructors work. They initialize variables

and structures within each instance of a class.

However, when the program is done with a class, it calls that

class’s destructor. The destructor has the same name as the class,

but prefixed with a tilde (~). Again, if you have a short program

that runs through some code once and exits, you really don’t

care. All that memory will be released anyway.

But if you have several classes that acquire memory and should

release them when they are done, you need to provide a class

destructor method. If you recall our Employees class from he

previous chapter, it contains a vector, which itself contains an

array of pointer to Employee classes. You need to release all that

memory in the destructor. Here is that Employees class showing

that destructor:

class Employees {
private:
 //contains an array of pointers to Employee objects
 vector <Employee *> employees;
public:
 //add a pointer to an Employee class to the vector
 void addEmployee(Employee* emp) {
 employees.push_back(emp);
 }
 //destructor releases memory
 ~Employees() {
 for (Employee* emp:employees) {
 delete emp; //release each instance
 }
 }
};

When is the destructor called?
The destructor is called whenever a class goes “out of scope,” so

no one could use it further. If you create a class and use it inside

a pair of braces, as soon as the program execution goes outside

those braces (usually a function method), the destructor is called

automatically.

Pointers and Memory 118

For example,

void mkadd() {
 Employees empls;
 empls.add(...);
}

Outside of those braces, empls does not exist, so the Employees

destructor is called and you need to delete any temporary

memory you may have acquired. If you don’t you may end up

with memory leaks.

Other uses for destructors
Any class that acquires system resources should release them

when the destructor is called. Obvious examples includes files. If

you open a file, the destructor should close it. If you have created

a temporary file, you should probably delete it here.

Smart Pointers

Smart pointers were added in 2011 and they manage themselves:

you don’t have to release any memory you allocate. These are

called unique_ptr’s and you can easily create them anywhere

you would create the older C-type pointers:

unique_ptr <Employee> emp1 =
 make_unique <Employee>(id++, "Susan", "Sugar", 5000);

Essentially, this says to create a unique pointer to a block of

memory where it stores an instance of the Employee class. There

can only be one instance of each of these unique pointers, and

you can’t copy them as part of a function call. For example, if

empl were an ordinary pointer, you could add it to a vector like

this:

employees.push_back(empl);

Pointers and Memory 119

But since that would create a copy of the pointer, the compiler

won’t allow you to do this. You have two ways that do work,

though.

First, you could pass the actual class instance into the Employees

class and have it create the unique pointer:

void addEmployee(Employee emp) {
 employees.push_back(make_unique<Employee> (emp));
}

Or, you could create the pointer in the calling program as we did

above and tell the compiler that you are going to move it into the

vector.

void addEmployee(unique_ptr<Employee> emp) {
 employees.push_back(std::move(emp));
}

That way, there is no copying, and this works just fine. Either

way, when you later fetch that pointer to get the Employee

instance, it works just like an ordinary pointer:

//get the pointer to the i-th Employee
//and return the actual Employee instance
Employee get(int i) {
 Employee emp = *employees[i];
 return emp;
}

While getting used to not accidentally copying pointers takes a

bit of time, this is a far safer way to write bigger programs and

avoid memory leaks.

Pointers and Memory 120

Example Code on GitHub

• Destruct.cpp – shows creating pointers and destroying

them

• EmployeePtr.cpp – passes a class instance in to avoid

copying a unique pointer

• EmployeeUniquMove – shows how to move a unique

pointer

Using linked lists 121

11. Using linked lists

Linked lists are an important part of building useful software

projects. While you can consider them as a kind of arrays, they

are considerably more versatile than that. You can use them to

represent sparse arrays or matrices, cells in a spreadsheet, lists of

commands to be executed or even lists of open windows in a

user interface. Just as important, it is very easy to insert or delete

members of a list without a lot of memory manipulation.

Definitions

A linked list is simply a linear chain of elements, or nodes.

Nodes are usually represented by instances of a C++ class. One

node is called the head and forms the beginning of the list. Not

surprisingly, the last element is generally called the tail. Each

node consists of a pointer to the next node in the list, starting

with the head and continuing up to the tail. Such a list is called a

singly linked list as shown in the Figure below.

In a doubly linked list, there are also pointers to the previous

element, so you can traverse the list in either direction.

Using linked lists 122

Usually, the last element has a next point with a Null value.

Linked lists are also possible in Python, although they use

references rather than pointers and may not be as fast.

In our linked list, we create a Cell class that holds those two

pointers as well as a pointer to some kind of data class. In this

example, we’ll just use our same old Employee class:

class Cell {
private:
 Employee* data;
 Cell* next{NULL};
 Cell* prev{NULL};
public:
 //constructor uses Employee pointer
 Cell(Employee* emp):data{emp}{}
 Employee* getData() {return data;} //return employee
//add a cell to the end of the chain
void addNext(Cell* ecell) {
 next = ecell;
}

The linked list class itself manages the head and tail pointers and

has the methods for adding cells to the list:

//constructs the linked list
class LinkedList{
private:
 Cell* head; //start of list
 Cell* tail; //last member of list
public:
 LinkedList(Cell* ecell){
 head = ecell;
 tail = ecell;
 }
 //add cell to end of list
 void addCell (Cell* ecell) {
 tail->addNext(ecell);
 auto oldtail = tail;
 tail = ecell;
 ecell->addPrev(oldtail);
 }

Using linked lists 123

As you can see from the addCell method, it calls the Cell’s

addNext method that adds one more cell to the tail of the chain.

Creating the list

You create the linked list, by creating Cells and adding them to

the LinkedList object. First we create the Employee pointer:

int id = 1;
//create new Employee pointer
Employee* emp1 = new Employee(id++,
 "Susan", "Sugar", 5000);

Then we create a new Cell for it:

//create a new Cell
Cell* cell1 = new Cell(emp1);

And finally, we use that Cell pointer to create the LinkedList

class:

//create the linked list with one cell in it.
LinkedList* links = new LinkedList(cell1);

We can create and add the rest of the cells in single statements:

//create remaining Employees and Cells in one statement
links->addCell(new Cell(new Employee(id++,
 "Sarah", "Smythe", 2000)));
links->addCell(new Cell(new Employee(id++,
 "Billy", "Bob", 1000)));
links->addCell(new Cell(new Employee(id++,
 "Arnold", "Stang", 800)));

Traversing the list

Then, it is really easy to move through a linked list: each cell has

a pointer to the next cell in the chain, and the last cell points to

NULL, indicating that you are done. In order to keep that code

from being part of the main program, the LinkList class returns

Using linked lists 124

an iterator to the list. That iterator, like those suggested in Design

Patterns has only a hasMore and a getNext method. We will

discuss the C++ iterator style later.

But to run through the list you need only get the iterator from the

LinkedList and use it:

fwdIter* fwd = links->getFwdIter(); //get the iterator
while (fwd->hasMore()) { //get the elements
 Cell* cell = fwd->getNext();
 Employee* emp = cell->getData(); //get data in cell
 cout << emp->getName() << endl; //and print it.
}

The fwdIter class checks the cells to see if you have reached the

end:

class fwdIter{
protected:
 Cell* cell;

public:
 fwdIter(Cell* c) {
 cell = c; //save the starting cell
 }
 bool hasMore() {
 return cell != NULL; //no more if NULL
 }
 Cell* getNext() {
 auto retCell = cell; //save this cell
 cell = cell->getNext(); //get the next(or NULL)
 return retCell; //return current cell
 }
};

The tricky part of this little iterator is that it returns the current

cell and then fetches the next one, which may be NULL. Then

when the program next calls hasMore, it can return true as long

is the new current cell is not NULL.

Using linked lists 125

The reverse iterator
You can derive the reverse iterator from the forward iterator. This

derived class only contains a new getNext method: the rest is the

same:

//iterator to move backward from end of list
class revIter: public fwdIter {
public:
 revIter(Cell* c) :fwdIter(c){
 }
 Cell* getNext() {
 auto retCell = cell;
 cell = cell->getPrev(); //get the previous cell
 return retCell;
 }
};

So, to print out the linked list from back to front, we get the

reverse iterator from the LinkedList and use it just like the

forward one:

revIter* rev = links->getRevIter();
while (rev->hasMore()) {
 Cell* cell = rev->getNext(); //get the prior cell
 Employee* emp = cell->getData(); //and its data
 cout << emp->getName() << endl; //and print it out
}

Inserting a new cell in the chain

You can insert a cell without moving any arrays around when

you are using linked lists. You just have to switch the pointers so

that the old left cell points to the new cell and the new cell points

to the right cell. This insertCell method Is part of our LinkedList

class:

//insert cell after cleft
void insertCell(Cell* cleft, Cell* cnew) {
 Cell* cright = cleft->getNext(); //cell to right
 cleft->setNext(cnew); //set pointer to new cell
 cnew->setNext(cright); //set right pointer in cnew

Using linked lists 126

 cright->setPrev(cnew); //set prev pointer in cright
 cnew->setPrev(cleft); //set prev pointer in cnew
}

The copy constructor

Now, suppose you want to create a new instance of a Cell class.

We could use one of the ones above and use it to make a new

one:

//illustrates copy constructor
Cell c = *cell2; //get a cell from above
Cell newCell = Cell(c); //use copy cons. to make new cell

So, what exactly is in this newCell? It turns out that this

heretofore unmentioned constructor copies all of the variables

inside that instance of the class into the new one. Let’s try this

out:

Employee* cdat = newCell.getData();
cout << newCell.getData()->getName() << endl;

Amazingly, this works just fine, and in this case prints out the

name “Bonnie Ocean.” (Her middle name must be Lyzoverthe!)

So, this means that all the pointers in that first cell are copied

into the new cell. This might not be such a great plan, because

those pointers might very well get deleted by a destructor,

leaving this new cell with one or more invalid pointers.

Every C++ class has a hidden copy constructor, and all it does is

copy all the fields, whether you want that or not. If such a

copied class might have such pointers lying about, you can

override the copy constructor and set them to NULL like this:

//copy constructor
Cell(Cell &cnew) {
 data = NULL;
 next = NULL;
 prev = NULL;
}

Using linked lists 127

The syntax of a copy constructor is just the class name and a

reference to the new cell name. Here is where you could null out

those pointers to prevent them being used where they may fail.

Is this trip really necessary?

Well, “this is all very well,” you might say, “but I never use copy

constructors.” Well C++ uses them under the covers a lot, so

don’t be too sure.

Suppose you want to pass an instance of the Cell class to a

function. (Not a pointer, now, a reference to the actual function.)

You might want to carry out some operation there in that

function. But for now, we’ll just return the name of the

Employee:

string names(Cell c) {
 Employee* emp = c.getData(); //ptr to Employee
 Employee e = *emp; //actual Employee
 nm = e.getName(); //get the name
 return nm; //and return it.
}

This looks like it should work, and it will if you haven’t

modified the copy constructor as we did above, because such

function calls copy the class instance. And of course, they use

the copy constructor! If you did modify the copy constructor, the

Employee pointer will be NULL and you won’t get any value for

names. Here is an example of how you might handle that:

string names(Cell c) {
 string nm = "no data";
 Employee* emp = c.getData();
 if (emp != NULL) {
 Employee e = *emp;
 nm = e.getName();
 }
 return nm;
}

Using linked lists 128

However, if you have modified the copy constructor, emp will

always be null.

So, the copy constructor can get you even when you aren’t

looking for it. Of course, the simplest way around this is to use

pointers to the classes, and everything will work, since no copy

constructor is ever called.

Deleting the copy constructor

One way to make sure this does not happen is to delete the copy

constructor instead of modifying it. Here is how to do this for the

Cell object:

Cell(Cell &cnew) = delete;

Summary

Linked lists are an extremely efficient way of organizing sparse

lists of data. You can run through them sequentially very rapidly

and it is fast and easy to insert or delete an element without

moving anything around in memory. The only disadvantage is

that searching them is not terribly efficient. And, of course, it is

up to you to manage the pointers and memory that you allocate.

You also have to be careful of the cell object you use to contain

list elements and be sure that you don’t misuse copy constructors

in the process.

Example Code

• LinkedList.cpp -- builds a doubly linked list of

Employees

• Copycon.cpp – shows copy constructor and how it could

fail

Templates 129

12. Templates

Templates don’t have any close analogy in Python: they are

pretty much unique to C++. Essentially templates are a special

kind of macro that allows you to write functions and classes

without requiring a specific type of data. Instead, you create a

template type which the compiler fills in, generating the actual

code for each type you require. Templates are deeply entrenched

in the C++ Standard Template Library, and you sometimes use

them without even realizing it.

Template functions

For example, the swap function is really a template function,

because you can use it two swap variables of any type. Here we

swap two doubles:

double a =123;
double b = 456;
swap(a,b);
cout << "a="<< a <<" b=" << b << endl;

and here we swap two strings:

string fruit1 = "banana";
string fruit2 = "orange";
swap(fruit1, fruit2);
cout << "fruit1="<< fruit1 <<" fruit2="<<fruit2<<endl;

The result of this little program is, of course:

a=456 b=123
fruit1=orange fruit2=banana

What is going on under the covers is that the swap function is

really defined as a simple template. We name it mySwap so it

doesn’t collide with the existing std::swap template.

Templates 130

//our own swap template function
template <typename myType>
void mySwap(myType a, myType b) {
 myType temp = a;
 a = b;
 b = temp;
}

It is common in C++ programs to just use the symbol T for the

type variable. Sometimes those who are new to C++ find this

confusing, so we started with myType above, but the actual code

is generally more like:

//our own swap template function
template <typename T>
void mySwap(T a, T b) {
 T temp = a;
 a = b;
 b = temp;
}

You can use any type name here that you like, but T is

commonly used.

Class templates

Template functions occur frequently in C++’s template library

but are used somewhat less frequently in user code than classes

that utilize templates. So, extending an example in

Tutorialspoint.com, let’s consider how we might build a Stack

class.

Stacks are entities much like vectors, except that they are mostly

used to push on and pop off values. So, we will use a class

template to create a stack from a vector. When we push a value

onto the stack, it is the top item, and the first one to be removed.

Unlike the vector class’s behavior our pop operation actually

returns that value. We really only need to find out if there are any

remaining values on the stack, and for this we’ll create a

hasValues() method which is simply the negation of the vector’s

empty() method.

Templates 131

When you create a template class, you start by declaring the

place holders for the types it will use. In this case, there is only

one:

template <class T>

Note that while we commonly use the keyword class here, you

could just as well have used typename. They are

interchangeable. Our class is very simple, being made up of just

the three methods:

push()
pop(), and
hasValues()

The class starts as shown below:

class Stack {
private:
 vector<T> values; //type specified here
};

The vector is of type T, where T can be any simple type or any

class instance. The push and hasData methods are equally

simple:

public:
 void push(T val){ //push onto stack
 values.push_back(val);
 }

 //return true if there are any values left
 bool hasValues() {
 return !values.empty();
 }

The only real work we have to do is to write a form of pop that

returns the top element rather than discarding it:

//pop a value from the stack
T pop() {
 if (hasValues()) {
 //save last value
 T popval = values[values.size()-1];

Templates 132

 values.pop_back(); //and remove it
 return popval;
 }
 else
 return NULL;
}

Note that the pop method returns a value of type T. Our calling

program is very simple. We simply specify the type the Stack

will handle and everything else is the same as usual:

int main() {
 Stack<int> stack; //create stack
 stack.push(20); //push on 3 values
 stack.push(42);
 stack.push(91);

 //pop off one at a time and print it
 do {
 cout << stack.pop()< < endl;
 } while (stack.hasValues());

 return 0;
}

The resulting output, is the list of numbers in reverse order as

they come off the stack:

91
42
20

Class templates of classes

Of course, you aren’t limited to simple types in creating

templates: you can use any class instances you want. For a

simple, but trivial, example let’s consider an area calculating

template class called DoArea. It can take any class which has a

getArea() method.

So here is our Rectangle class, much like ones we’ve written

before.

Templates 133

//Rectangle class
class Rectangle {
private:
 double width;
 double height;
public:
 //constructor
 Rectangle(double w, double h):width{w},height{h}{
 }
 //default constructor
 Rectangle(){}
 double area() {
 return width * height;
 }
};

It is important to note that classes to be used in templates must

have a default constructor: that is a constructor that has no

arguments like the Rectangle() constructor above.

Similarly, we can write a Semicircle class that returns its area:

πr2/2.

class Semicircle {
private:
 double radius=0;
public:
 //constructor
 Semicircle(double rad):radius{rad} {
}
 //default constructor
 Semicircle(){}
 double area() {
 return radius * radius * pi/2;
 }
};

The math constant π is available in C++ version 20 along with

quite a lot of others, as long as you include the following in the

program header.

#include <numbers>
using namespace std::numbers;

Templates 134

A link to the complete list of math symbols is given in the

References below.

With those classes in mind, here’s how we build a template to

return areas:

//gets the area of any class
//with a getArea method
template <class T>
class DoArea {
private:
 T shape ;
public:
 DoArea (T tshape):shape{tshape} {
 }
 double getArea() {
 return shape.area();
 }
};

So, to call this template class method we create instances of the

two classes:

//create 2 shapes
Rectangle rect = Rectangle(5,6);
Semicircle semi = Semicircle(7);

Then we can use the template to get the area:

//get area of semicircle
DoArea doarea = DoArea(semi);
cout << "Semicircle "<< doarea.getArea() << endl;

Or, in a single statement:

//get area of rectangle
cout << "Rectangle "<< DoArea(rect).getArea() << endl;

Templates 135

References

1. https://www.tutorialspoint.com/cplusplus/

2. cpp_templates.htm

3. https://en.cppreference.com/w/cpp/symbol_index/

numbers

Example Code

• Swapper.cpp – swap function

• Stack.cpp – creates stack from vector

• shapes.cpp – Template for area of rectangle and

semicircle

https://www.tutorialspoint.com/cplusplus/

Templates 136

Creating user interfaces 137

13. Creating user interfaces

In Python, you can create nice looking user interfaces using the

provided tkinter toolkit, or one of the external products like

PyQt or wxPython. Of these, only wxPython has a C++

equivalent, because they are built on the same code base. If you

have looked at wxPython, you will find that it is much like

tkinter in the objects it creates and the layout managers it uses.

The C++ version, called wxWidgets, is well designed and easy

to use, and gives you a way to create buttons, labels, listboxes,

tables and entry fields, and interact with the user. While

wxWidgets can run on all three major platforms: Windows,

Macintosh and Linux, it works best in Windows using Visual

Studio Community Edition. Installation of wxWidgets amounts

to downloading code libraries and setting a number of

environment variables. We describe this installation at the end of

this chapter. While it has been reported that you can also install it

to use the CLion IDE, we haven’t tried it. However, there is a

reference to that article at the end of the chapter.

Most documentation for wxWidgets is online, and you can

usually find the answer to how to do something pretty quickly.

Note that there is a web site containing a complete description of

every widget in the package, and all of each widget’s methods,

but with little or no example code. A search for the widget name

followed by “example code” will usually give you what you

want. Two of the authors of wxWidgets wrote a book on the

system in 2008, which is still available for around $50, although

used copies are also available. The problem is that the

wxWidgets system has evolved significantly since that yeoman

chore was completed, notably in event handling, and the book is

no longer that useful.

Creating user interfaces 138

A wxPython example

Let’s start by looking at the rather simple code wxPython

requires to display a window with a title in the title bar. Like

tkinter, you start by setting up the window and then launching

the window event system by calling the app.MainLoop()

method.

Import the wxPython package.
import wx

app = wx.App() # Create an application object.
frm = wx.Frame(None, title="Hello World") # Then a frame.
frm.SetInitialSize((250, 200)) #et the size
frm.Show() # Show it.

Start the event loop.
app.MainLoop()

This will create a simple 250 x 200 pixel window with a title in

the title bar.

Figure 13-1 - Python window with title bar

You can launch a similar window in C++ using the wxWidgets

toolkit:

Creating user interfaces 139

#ifndef WX_PRECOMP
#include <wx/wx.h>
#include "wx/app.h"
#endif

//create the app
class MyApp : public wxApp
{
public:
 bool OnInit() { //called to start the UI
 wxFrame* frame = //create the frame
 new wxFrame(NULL, wxID_ANY, "Hello World");

 frame->SetSize(250, 200); //set a size
 frame->Show(true); //and show it
 return true;
 }
};
//launch the app
wxIMPLEMENT_APP(MyApp);

Note that the very last line is a macro that actually starts the

window and event code running. The identical window this code

generates is shown in Figure 13-2.

Figure 13-2 --wxWidgets window with title bar

In both cases we create a frame with a title for the title bar, set

the size and launch the app. In the C++ case, you create an app

Creating user interfaces 140

derived from wxApp, that has an OnInit method that gets called

from the wxIMPLEMENT_APP macro. This kicks off the event

processing code.

Strings in wxWidgets

Nearly all of the methods in the wxWidgets objects require that

you call them with a string converted to a wxString object. The

wxString behaves mostly like any other string, but it can handle

Unicode characters as well. So, you will see calls to many

methods converting your string to a wxString like this one:

wxStaticText* tx = new wxStaticText(panel, wxID_ANY,
 wxString("Greetings"), wxPoint(40,60));

There is also a shorter spelling of this method as a macro called

wxT():

wxStaticText* tx = new wxStaticText(panel, wxID_ANY,
 wxT("Greetings"), wxPoint(40,60));

They work the same way. Likewise, reading entry fields returns a

wxString rather than a C++ string, but these widgets provide a

conversion method: ToStdString(), like this one:

string st1 = num1->GetLineText(0).ToStdString();

Writing basic wxWidgets code

As you can see, creating a window amounts to creating a frame.

But, if we want to put components inside that frame, we have to

create a wxPanel as well. While you can place some widgets

directly in a wxFrame, you can’t position them at all. And

further, if they are inside a wxPanel, you can tab between them

using your keyboard’s Tab key.

So, in this next simple example, we create a panel and put a label

inside it. Note, however, that unlike other GUI systems, labels

Creating user interfaces 141

are called wxStaticText objects. So, we create a frame, put a

panel inside it and place the label inside that.

class MyApp : public wxApp {
public:
 bool OnInit() {
 wxFrame* frame = new wxFrame(NULL, wxID_ANY,
 "Hello World");
 frame->SetSize(250, 200);
 wxPanel* panel = new wxPanel(frame);

 wxStaticText* tx = new wxStaticText(panel,
 wxID_ANY,
 wxString("Greetings"),
 wxPoint(40,60));

 frame->Show(true);
 return true;
 }
};

Note that we don’t “add” the label to the panel. We just say that

the parent window of the wxStaticText control is the panel. Note

also, that in this first such case, we specify the coordinates of

that label right in the constructor, as a wxPoint object, with

the(40, 60) coordinates specified. The resulting window looks

like this:

Figure 13-3 --Static text positioned at (40,60)

Creating user interfaces 142

With the “Greetings: label not at (40,60).

Sizers

In Python’s tkinter, you can arrange your visual objects using

Layout Managers. In wxWidgets, these are called sizers, but

have much the same functions. Sizers are pretty simple to use,

and there are just a few of them.

• wxBoxSizer – a vertical or horizontal layout with one

object per row or column.

• wxStaticBoxSizer – includes a labelled frame around the

box region.

• wxGridSizer – evenly sized grid rows and columns

• wxFlexGridSizer – sizes or grid cells are adjusted to fit

your widgets

• wxGridBagSizer – flexible grid size and you can specify

the grid position directly.

Include Files

Most of the wxWidgets have their own include files, all under

the wx directory:

#include “wx/wx.h” – for base objects
#include “wx/app.h” – for all apps
#include “wx/button.h” – for buttons
#include "wx/sizer.h” – for most of the sizers
#include "wx/gbsizer.h" – for the GridBagSizer
#include “wx/treectrl.h" - for the TreeCtrl

The Box Sizer

The most common layout tool is the wxBoxSizer. You generally

create a panel and then add a sizer to it like this:

//create the Box sizer
 wxBoxSizer* vbox = new wxBoxSizer(wxVERTICAL);
 panel->SetSizer(vbox);

Creating user interfaces 143

With the BoxSizer, you can select either vertical or horizontal

orientation. Each item you add to the sizer is thus either in a new

row (wxVERTICAL) or a new column (wxHORIZONTAL). You

can begin right at the top for the vertical sizer, or you can add

some space first:

//create the text label
 wxStaticText* tx = new wxStaticText(panel, wxID_ANY,
 wxString("Greetings"));
 vbox->AddSpacer(50);
 vbox->Add(tx); //and add it to the box

or, you can add the widget with center or right positioning. For

example,

vbox->Add(tx,
 0, //not stretchable
 wxALIGN_CENTER, //alignment
 10); //border width

These are both shown in .

Figure 13-4 Box sizer without(left) and with(right) wxALIGN_CENTER

Splitting up the main app

While the basic example code provided with wxWidgets uses

MyApp as the name of the app that launches the program, we

usually call it Builder. Then, we recommend splitting up the

class to a header declaration.

Creating user interfaces 144

class Builder : public wxApp {
public:
 bool OnInit();
};

And puting the code for OnInit below the

wxIMPLEMENT_APP(Builder);

In this case, that code simply builds the window just as we did

above:

bool Builder::OnInit() {
 wxFrame* frame = new wxFrame(NULL, wxID_ANY,
 "Hello World");
 frame->SetSize(250, 200);
 wxPanel* panel = new wxPanel(frame);

 //create the Box sizer
 wxBoxSizer* vbox = new wxBoxSizer(wxVERTICAL);
 panel->SetSizer(vbox);

 //create the text label
 wxStaticText* tx = new wxStaticText(panel, wxID_ANY,
 wxString("Greetings"));
 vbox->AddSpacer(50);
 vbox->Add(tx); //and add it to the box
 frame->Show(true);
 return true;
}

More on labels

The text size and color are adjustable, of course, and we have

found it convenient to create a derived BlueLabel class we can

use throughout. In this class, we make the color blue and the font

size a bit bigger, 12 point instead of the default 10 point.

Colors in wxWidgets can be represented as 3 integers between 0

and 255 for the red, green and blue base colors. So, to change the

color of a label, you could write:

SetForegroundColour(wxColour(0, 0, 200));

Creating user interfaces 145

Or for most common colors, you can just use a quoted string

SetForegroundColour("blue");

Let’s create our BlueLabel class as a header and a body that we

can put in any project we want. The header is:

class BlueLabel : public wxStaticText {
public:
 BlueLabel(wxPanel* parent, int id,
 const wxString& label);

};

And the body in the cpp file is just:

//----A derived class for blue labels-------

BlueLabel::BlueLabel(wxPanel* parent, int id,
 const wxString& label) :
 wxStaticText(parent, id, label) {
 SetForegroundColour("blue");
 wxFont font = wxFont(10,
 wxFONTFAMILY_DEFAULT, wxFONTSTYLE_NORMAL,
 wxFONTWEIGHT_NORMAL, FALSE, "");

 this->SetFont(font);
 }

Entry fields and buttons

Now, let’s write just a slightly more complicated window that

allows you to enter your name, click on a button and have your

name echoed back to you.

Our new window will have 4 lines in a vertical BoxSizer:

• a title BlueLabel

• an entry field

• a “Say hi” button

• a BlueLabel where the greeting is displayed

Creating user interfaces 146

In this program entry fields are called wxTextCtrl widgets, and

buttons are called wxButton widgets.

So setting up the layout should be very simple. First, we declare

this widgets as class instance variables:

class Builder : public wxApp {
private:
 BlueLabel* title;
 wxTextCtrl* name;
 wxButton* butn;
 BlueLabel* greeting;

And then, in the Builder OnInit() method, we place them in a

vertical BoxSixer:

 vbox->AddSpacer(20);
 vbox->Add(title, 0, wxALIGN_CENTER, 10);

 name = new wxTextCtrl(panel, wxID_ANY);
 vbox->Add(name, 0, wxALIGN_CENTER, 10);

 vbox->AddSpacer(10);
 butn = new wxButton(panel, wxID_ANY, "Say hi");
 vbox->Add(butn, 0, wxALIGN_CENTER, 10);

 vbox->AddSpacer(10);
 greeting = new BlueLabel(panel,
 wxID_ANY,"");
 vbox->Add(greeting, 0, wxALIGN_CENTER , 10);

Note that the message label at the bottom is filled with blanks so

it will more or less stay centered for various length names. The

window we have created looks like Figure 13-5.

Creating user interfaces 147

Figure 13-5 Entry field, push button and blank label

But what about the button? What does it do and how do we

handle it?

Events in wxWidgets

Every operation that causes a change in a window object

generates an event. The obvious ones are button clicks, listbox

clicks, checkbox clicks and so forth. But there are also events

when the text changes in an entry field, or when scrollbars move,

and so forth. Every event inherits from the base wxEvent class,

and each such event contains a pointer and ID of the widget that

generated the event, so you can distinguish identical events from

different sources. Note that in scrolling through the copious

online wxWidgets documentation, you will also find references

to the older event table approach. These tables are constructed at

compile time, while the later Bind event handling is more

flexible as it can be changed while the program is running. We

will discuss only the later, and more flexible, Bind method.

For each event you want to intercept, you must bind the event to

a method in an existing instance of the class. To simplify this,

you usually bind to a method in the Builder class, and let that

method call other classes if it needs to.

For our single “Say hi” button above this amounts to issuing a

single Bind call like this one:

Creating user interfaces 148

//Now add in button click event
 butn->Bind(wxEVT_BUTTON, &Builder::OnClick, this);

What this Bind call days is that if the wxButton named butn

issues a wxEVT_BUTTON event, then that button click should

call the OnClick method in the Builder class.

Of course, we have to declare the OnClick method in the header

section:

public:
 bool OnInit();
 void OnClick(wxCommandEvent& event);

And in the actual OnCLick method, we just fetch the text string

from the name field and prepend a “Hi” to it and put it in the

greeting label.

void Builder::OnClick(wxCommandEvent& event) {
 //get the text and convert it to a string
 string text = name->GetLineText(0).ToStdString();
 string grtext = "Hi " + text; //prepend "Hi"
 if (text == "Jim") grtext += " boy!";
 //put result in greeting
 greeting->SetLabelText(grtext);
}

In honor of Robert Heinlein, if the name is “Jim” you get a

special revised greeting.

Figure 13-6 - Greeting to Sarah and to Jim

Creating user interfaces 149

Adding two numbers together

This example appears at first to be quite similar to the previous

one, However, we will use it to show you several new concepts:

• The GridBag sizer

• Buttons and the Command design pattern

• Formatting numbers in a label

• A virtual function

Here is the user interface we have constructed:

Figure 13-7 - Add 2 numbers using GridBag layout sizer

The GridBag Sizer
You create a GridBag sizer as a grid of rows and columns. It

doesn’t matter if you specify more rows and columns than you

end up using: only ones that are populated will show in the

window. Here we first create a 10x10 grid but only end up using

6 in each direction:

wxGridBagSizer* gbs = new wxGridBagSizer(10, 10);
panel->SetSizer(gbs);

Now, our grid looks like this:

Creating user interfaces 150

 0 1 2 3

0

1 Add 2 numbers

2 First num Entry field num1

3 Second num Entry field num2

4 Add Clear

5 The Sum

Note that the text in row 1 begins in column 1. We achieve this

using the wxGBSpan method that specifies the starting row and

the number of columns:

BlueLabel* topTitle =
 new BlueLabel(panel, wxID_ANY,
 wxT("Add 2 numbers"));
 gbs->Add(topTitle,
 wxGBPosition(1, 1), wxGBSpan(1, 3));

The same approach applies to the two rows of labels and entry

fields:

//first label and entry field
 BlueLabel* lineLabel =
 new BlueLabel(panel, wxID_ANY, " First num: ");
 gbs->Add(lineLabel, wxGBPosition(2, 0));

 num1 = new wxTextCtrl(panel, wxID_ANY, "",
 wxDefaultPosition, wxSize(100, 30));
 gbs->Add(this->num1, wxGBPosition(2, 1),
 wxGBSpan(1, 2));

 //second label and entry field
 BlueLabel* lineLabel2 =
 new BlueLabel(panel, wxID_ANY,
 " Second num: ");
 gbs->Add(lineLabel2, wxGBPosition(3, 0));

 num2 = new wxTextCtrl(panel, wxID_ANY, "",
 wxDefaultPosition, wxSize(100, 30));
 gbs->Add(num2, wxGBPosition(3, 1), wxGBSpan(1, 2));

Creating user interfaces 151

The Add and Clear buttons are each centered in two columns: 0-

1 and 2-3:

 // Add button
 AddButton* addButton = new AddButton(panel,
 wxID_ANY, this, this);
 gbs->Add(addButton, wxGBPosition(4, 0),
 wxGBSpan(1, 2), wxALIGN_CENTER_HORIZONTAL);

 // Clear button
 ClearButton* clearButton =
 new ClearButton(panel, wxID_ANY, this, this);

 wxSizerItem* obj = gbs->Add(clearButton,
 wxGBPosition(4, 2),
 wxGBSpan(1, 2),
 wxALIGN_LEFT);

And, finally, the Sum label at the bottom begins in column 1,

with nothing in column0.

 // sum label
 sumLbl = new BlueLabel(panel, wxID_ANY, "The Sum ");
 gbs->Add(sumLbl, wxGBPosition(5, 1));

The Add and Clear buttons

But what are those Add and Clear buttons? They clearly are

derived from wxButton, but why did we do that? Let’s start with

the code in the Builder that carries out the Addition and the

Clearing of the form:

// This is the Add button click event
void Builder::addClicked(wxCommandEvent& event) {
 string st1 = num1->GetLineText(0).ToStdString();
 string st2 = num2->GetLineText(0).ToStdString();

 double sum = stod(st1) + stod(st2);
 string st3 = "Sum is: " + format("{:5g}", sum);
 sumLbl->SetLabel(st3);
}

Creating user interfaces 152

// Clear button click event
void Builder::clearClicked(wxCommandEvent& event) {
 num1->SetLabel("");
 num2->SetLabel("");
 sumLbl->SetLabel("Sum is:");
}

Note that when you fetch text from a wxTextCtrl entry field, the

method assumes that there may be several lines of text in the

window, and you are asking for the first line by GetLineText(0)

and converting from a wxString to a string with the

ToStdString() method.

So, in the addClicked method, you fetch each entry as a string,

and then use the C conversion method stod (string to double) to

produce a number you can add to another.

And, in the clearClicked method, you simply set the contents of

the two entry fields and the Sum label to a zero length string.

Note that these SetLabel methods will accept a C++ string and

automatically promote it to a wxString automatically.

Command Buttons

While for simple programs like this one, it is not uncommon to

Bind the click event to the two click event methods above, there

is a more general way to handle this by creating a Command

Button. In this case, the button itself processes the click event

and calls the click event function in the Builder, or wherever else

it might reside.

We start by creating a basic DButton abstract class that calls an

empty comd method.

Creating user interfaces 153

class DButton : public wxButton {
protected:
 Builder* bld;

public:
 DButton(wxPanel* panel, int id,
 const std::string label,
 Builder* bld, wxApp* app) :
 wxButton(panel, id,
 wxString::wxString(label), wxDefaultPosition,
 wxDefaultSize)
 {
 this->bld = bld;
 Bind(wxEVT_BUTTON, &DButton::comd, this);
 }

 //abstract method to be completed in derived classes
 virtual void comd(wxCommandEvent& event) =0;
};

So, as you can see, the DButton constructor Binds the button

event to the comd method there in the same class. This comd

method is empty and has no code. But note that the method is

labelled as virtual and set to zero. This means that this method

must be overridden by methods in derived classes. And that is

exactly what we do with these two buttons, derived from

DButton.

// causes the addition
class AddButton : public DButton {
public:
 AddButton(wxPanel* panel, int id,
 Builder* bld, wxApp* app) :
 DButton(panel, id, string("Add"), bld, app) {}

 void comd(wxCommandEvent& event) {
 bld->addClicked(event);
 }
};

Here the add button has comd method which calls the

addClicked method in the Builder class. Note that these derived

classes do not need to have a Bind call, because it is in the base

Creating user interfaces 154

DButton class. This is true, of course for the Clear button as

well:

//clears the entry fields and sum labell
class ClearButton : public DButton {
public:
 ClearButton(wxPanel* panel, int id,
 Builder* bld, wxApp* app) :
 DButton(panel, id, "Clear", bld, app) {}

 void comd(wxCommandEvent& event) {
 bld->clearClicked(event);
 }
};

This approach is an example of the Command Design Pattern,

where the widget itself calls the function that does the

processing. And if you move the addClicked and clearClicked

methods to another class called a Mediator, that is an example of

the Mediator Design Pattern, which can handle all the

interactions among GUI widgets. We’ll see it used in code in

following chapters. And of course, the Command pattern can

apply to menu clicks, checkbox and Radiobutton clicks and even

keystrokes in an entry field, so it is quite general.

Menus

Creating menus in a wxWidgets window is really very simple.

The menu system is made up of a wxMenuBar along the top,

with wxMenu objects making up the top line entries. You can

add as many wxMenuItems under each wxMenu object as you

want. A simple example might be one that had two Menu

objects, each with one or more menu entries under it.

File Help

Hello About

Open

Clear

Exit

Creating user interfaces 155

The actual program is shown in Figure 13-8:

Figure 13-8 - Menu display of HiThere program

Whiile MenuItems are much like Buttons in how they respond to

events, programming of them is a little different. Every menu

item must have a unique ID. While there are precoded Stock

Items[5] for most common menu actions, you will need to create

your own frequently once you get beyond wxHELP and

wxEXIT. There are over 70 predefined stock symbols, but they

aren’t terribly useful since you can make a set of numbers

yourself using the enum approach described next.

For this example program, we created a little enumerated list of

constants that can be used as MenuItem IDs.

enum menuKeys {mkHELLO, mkOPEN, mkHi, mkCLEAR};

These keys start at zero unless you specify a specific value for

one or more of them.

Using these, we can create the entire menu from the menus and

menu items.

//Create a File menu on the menu bar
 wxMenu* menuFile = new wxMenu;

Creating user interfaces 156

 menuFile->Append(mkHELLO, "&Hello...\tCtrl+H",
 "Help string shown in status bar for this menu item");

 menuFile->Append(mkOPEN, "&Open");
 menuFile->Append(mkCLEAR, "&Clear");
 menuFile->AppendSeparator();
 menuFile->Append(wxID_EXIT, "E&xit");

 //create a Help menu
 wxMenu* menuHelp = new wxMenu;
 menuHelp->Append(wxID_ABOUT);

 //add the Menus to the MenuBar
 wxMenuBar* menuBar = new wxMenuBar;
 menuBar->Append(menuFile, "&File");
 menuBar->Append(menuHelp, "&Help");

 frame->SetMenuBar(menuBar);

Note that the Append method actually creates a wxMenuItem

directly. You can also do this in two steps, which might be useful

if you need to modify the menu item.

wxMenuItem* mquit = new wxMenuItem(menuFile,
 wxID_EXIT, wxT("E&xit\tCtrl+X"));
menuFile->Append(mquit);

Note that the About menu does not have text provided, because

the Stock Item table has “About” as the standard label for

wxID_ABOUT. By contrast, we did provide a text label for

wxID_EXIT, because the default label in the Stock Items table is

“Quit” rather than the expected “Exit.”

Shortcuts and accelerators
For every MenuItem, you can pick an accelerator character by

preceding it with an ampersand (&) in the label. So, for example

to exit from the program you would hold down Alt and then

select F and then X.

You can also pick a shortcut character, as we do with the Hello

menu item. Pressing Ctrl and H together executes the Hello

Creating user interfaces 157

menu item directly. You can precede any character with Shift, Alt

or Ctrl to create these shortcut characters.

Radio or check menuitems

By adding one of the flags ITEM_CHECK or wxITEM_RADIO,

you can turn any menu item into an item with a radio button or

checkbox. These are checked or unchecked each time you select

them, and you can check them in your code using the isChecked

method.

Binding MenuItems
Binding MenuItems to action routines is slightly different than

for Buttons and the like. The Bind methods all require that you

refer to that menu item’s ID. So, the Bind methods for this

simple demo program are:

 Bind(wxEVT_MENU, &Builder::OnClick, this, mkHELLO);
 Bind(wxEVT_MENU, &Builder::Exit, this, wxID_EXIT);
 Bind(wxEVT_MENU, &Builder::Clear, this, mkCLEAR);
 Bind(wxEVT_MENU, &Builder::About, this, wxID_ABOUT);
 Bind(wxEVT_MENU, &Builder::fileOpen, this, mkOPEN);

Then you can easily write the simple methods:

void Builder::Exit(wxCommandEvent& event) {
 frame->Close(true);
}
void Builder::Clear(wxCommandEvent& event) {
 name->SetLabelText("");
 greeting->SetLabelText("");
}

The OnClick method is just the same as it was for the HiThere

program above.

The About menu item pops up a simple Info Dialog:

void Builder::About(wxCommandEvent& event) {
 wxMessageDialog* dlg = new wxMessageDialog(NULL,
 wxT("A simple menu demo"), wxT("Info"), wxOK);
 dlg->ShowModal();
}

Creating user interfaces 158

This is shown in Figure 13-9.

Figure 13-9 - An Infor dialog for the About menu item

Dialog Boxes

You can make several useful, common dialog boxes from the

wxMessageDIalog widget varying the icons and buttons you

select by ORing these symbols together:

wxOK, wxCANCEL, wxYES_NO, wxHELP, wxNO_DEFAULT,
wxCANCEL_DEFAULT, wxYES_DEFAULT,
wxYES_DEFAULT, wxOK_DEFAULT, wxICON_NONE,
wxICON_EXCLAMATION, wxICON_ERROR, wxICON_HAND,
wxICON_QUESTION, wxICON_INFORMATON, wxCENTRE and,
wxSTAY_ON_TOP.

Here are four of the most common ones, as suggested by the

Zetcode tutorial:

You can create these dialogs with the following calls to the

MessageDialog:

wxMessageDialog* dlg = new wxMessageDialog(NULL,

Creating user interfaces 159

 wxT("Program is running"), wxT("Info"),
 wxOK|wxICON_INFORMATION);
wxMessageDialog* dlg = new wxMessageDialog(NULL,
 wxT("Error reading file"), wxT("Error"),
 wxOK | wxICON_ERROR);

Unlike dialogs in other GUI systems, the dialog does not return

any value directly. Instead, you must check the value of

dlg.ShowModal(), which may be wxID_OK, wxID_CANCEL,

wxID_YES, wxID_NO or wxID_HELP, and take appropriate

action.

The File Dialog

There are a number of specialized dialogs available for selecting

colors and fonts and the like, but one you are most likely to use

is the wxFileDialog for opening and saving files. It has the form:

wxFileDialog
openFileDialog(this, _
"prompt string",
"default directory",
"default file",
"wildcard filter (*.jpg"),
flags);

Where the flags can be some of the following:

wxFD_OPEN or wxFD_SAVE, //is either an open or save
wxFD_OVERWRITE_PROMPT, //prompt to confirm a file
 //may be overwritten
wxFD_FILE_MUST_EXIST,
WxFD_MULTIPLE,
wxFD_CHANGE_DIR //change to the current directory

Installing wxWidgets

You can download prebuilt binaries for all platforms [8]. For

Windows, and Visual Studio, see Reference 9. You can then find

Windows solution files for building debugging and release

versions for both 64-bit and 32-bit systems.

https://docs.wxwidgets.org/3.0/classwx_file_dialog.html
https://docs.wxwidgets.org/3.0/group__group__funcmacro__string.html#ga8a02b8875a521df57263a9e6f090f2d0

Creating user interfaces 160

To create wxWidget programs your project properties should

have include file paths set to

$(wxwin)\include;$(wxwin)\include\msvc;$(IncludePath)

And your library path to

$(wxwin)\lib;$(LibraryPath)

Where $wxwin is an environment variable you set to the top

level directory where wxWidgets is installed.

Under C/C++ Preprocessor, Preprocessor Definitions should be

set to

_DEBUG;
MOREADDING_EXPORTS;
_CONSOLE;
_CRT_SECURE_NO_DEPRECATE=1;
_CRT_NON_CONFORMING_SWPRINTFS=1;
_SCL_SECURE_NO_WARNINGS=1;
__WXMSW__;
_UNICODE;
_WINDOWS;
NOPCH;
Win32_LEAN_AND_MEAN;
%(PreprocessorDefinitions)

Example Programs on GitHub

In cases where there are multiple files as part of a project, they

are all stored in a folder together.

• wxHello.py – wxPython version of Hello World

• Frame1.cpp – Hello World title in plain window.

• Frame2.cpp – Simple window with title bar and

Greetings label displayed

• Frame3.cpp – Same window using BoxSizer.

• Hithere.cpp – BlueLabel, entry field and “Say hi” button

that reads the name and says Hi to it.

Creating user interfaces 161

• Add2widgets.cpp – Adds 2 numbers and displays

answer. Uses GridBagSizer and the Command pattern.

• Moreadding.cpp – same as above only using a Mediator

class instead of putting code in the Builder.

• HelloMenu.cpp – Adds a menu to the Hithere.cpp

program above.

• Dialogs.cpp – illustrates 4 types of wxMessageDialogs.

• Preproc.txt – The text of the preprocessor definitions.

References

1. https://docs.wxwidgets.org

2. Julian Smart and Kevin Hock, Cross-Platform GUI

Programming with wxWidgets, Prentice-Hall, 2008.

3. Better examples: https://wiki.wxwidgets.org/Main_Page

and https://zetcode.com/gui/wxwidgets/

4. A complete list of color names can be found at

https://docs.wxwidgets.org/3.0/classwx_colour_database

.html

5. A complete list of some 70 stock menu names can be

found at

https://docs.wxwidgets.org/3.0/page_stockitems.html

6. Installing wxWidgets for Visual Studio.

https://www.youtube.com/watch?v=1fZL13jIbFQ

7. Using wxWidgets in CLion.

https://forums.wxwidgets.org/viewtopic.php?t=45198

8. Installing wxWidgets.

https://docs.wxwidgets.org/3.2.3/overview_install.html

9. Installing wxWidgets for Windows and Visual Studio

https://docs.wxwidgets.org/3.2.3/

plat_msw_binaries.html

https://docs.wxwidgets.org/
https://wiki.wxwidgets.org/Main_Page
https://docs.wxwidgets.org/3.0/classwx_colour_database.html
https://docs.wxwidgets.org/3.0/classwx_colour_database.html
https://docs.wxwidgets.org/3.0/page_stockitems.html
https://forums.wxwidgets.org/viewtopic.php?t=45198
https://docs.wxwidgets.org/3.2.3/

Creating user interfaces 162

Choices and Listboxes 163

14. Choices and Listboxes

The two most common ways of giving your user choices are

radio buttons and checkboxes. Except for the shape of the button

(round vs square) and whether you can check more than one,

they are remarkably similar to create.

RadioButtons

If you want your user to pick only one of several choices, radio

buttons are your best bet. You simply create a panel and insert all

the individual buttons in that panel, This makes them all part of

the same group, and you can only select one button from a

group. If you want another grouping as well, just put them in

another panel. The wxWidgets system also allows you to change

to a new group in the middle of adding buttons to the same panel

by adding the wxRB_GROUP modifier to that button, but this is

not a great idea, since it could be visually confusing to your user.

So, to create a group of wxRadioButtons you simply create a

panel and add them, usually using a vertical BoxSizer. We make

the following call for each button.

 cred = new wxRadioButton(panel, wxID_ANY,
 wxString("Red"));
 btSizer->Add(cred);

The result looks like the left image in Figure 14-1. Clearly this

is a little crowded.

A better way is to create a little method that adds space to the left

of each button and some space between the buttons. That code is

simply

Choices and Listboxes 164

wxRadioButton* Builder::addButton(wxPanel* pnl, string
label) {
 //create the button
 wxRadioButton* cbut =
 new wxRadioButton(pnl, wxID_ANY, wxString(label));
 // put it in a horizontal BoxSizer space to the left
 wxBoxSizer* hbox = new wxBoxSizer(wxHORIZONTAL);
 hbox->AddSpacer(20);
 hbox->Add(cbut);
 btSizer->Add(hbox);
 btSizer->AddSpacer(10); //add space after button
 return cbut;
}

Then in the main builder routine we call this function 3 times:

 cred = addButton(panel, "Red");
 cblue = addButton(panel, "Blue");
 cgreen = addButton(panel, "Green");

The result is on the right side of Figure 14-1.

Figure 14-1 -- Radio buttons without and with spacers

Reading the Radio buttons

Finding out which button is selected is much simpler than in

Python’s tkinter approach. You can iterate through the buttons

Choices and Listboxes 165

and find which one is selected and place that label at the top of

the window using the GetFirstInGroup() and

GetNextInGroup() methods. Then for each button, you call

GetValue(). If it returns true, that button is selected.

void Builder::OnClick(wxCommandEvent& event) {
 //get first button
 wxRadioButton* cbut = cred->GetFirstInGroup();
 do {
 if (cbut->GetValue()) //true if selected
 topLabel->SetLabelText(cbut->GetLabelText());
 cbut = cbut->GetNextInGroup(); //get next button
 } while (cbut != NULL); //until done
}

The result is show in Figure 14-2.

Figure 14-2 -- Label contains the text of the selected button

Responding to RadioButton clicks

Let’s consider a program where the display changes whenever

you click on any of the radio buttons. This means that instead of

using that Check button to check the settings of the radio buttons

you see a result as soon as you click on one. Figure 14-3 shows a

simple example program that changes the color of the right-hand

panel as soon as you click on a button.

Choices and Listboxes 166

Figure 14-3 --Change colors on click

The GUI is made of two panels, with the left panel the same

three-color buttons. The right panel’s background color changes

whenever you click on one of them.

The simplest way to do this is to bind each of the three buttons to

a click event:

cred = addButton(leftPanel, "Red");
cred->Bind(wxEVT_RADIOBUTTON, &Builder::redClick, this);

cblue = addButton(leftPanel, "Blue");
cblue->Bind(wxEVT_RADIOBUTTON, &Builder::blueClick, this);

cgreen = addButton(leftPanel, "Green");
cgreen->Bind(wxEVT_RADIOBUTTON, &Builder::greenClick,
 this);

Then the click events simply change the right panel’s color. Note

that you have to refresh the panel for that color to change:

void Builder::redClick(wxCommandEvent& event) {
 rightPanel->SetBackgroundColour("red");
 rightPanel->Refresh();
}
void Builder::blueClick(wxCommandEvent& event) {
 rightPanel->SetBackgroundColour("blue");
 rightPanel->Refresh();
}
void Builder::greenClick(wxCommandEvent& event) {
 rightPanel->SetBackgroundColour("green");
 rightPanel->Refresh();
}

Choices and Listboxes 167

This will work for a small number of buttons, but for a larger

number it can get a bit unwieldy.

A second way to select the right action is to bind all of the

buttons to a single onClick method and then iterate through the

buttons to find the selected one, much as we did earlier.

void Builder::onClick(wxCommandEvent& event) {
 //get first button
 wxRadioButton* cbut = cred->GetFirstInGroup();
 do {
 if (cbut->GetValue()) {
 wxString lbl = cbut->GetLabelText();
 lbl.LowerCase();
 rightPanel->SetBackgroundColour(wxColor(lbl));
 }
 cbut = cbut->GetNextInGroup(); //get next button
 } while (cbut != NULL); //until done
 rightPanel->Refresh();
}

Finding the calling object

The third way to handle this is to find the object that caused the

event. Here we get that object from the event using the

GetEventObject method. Then we cast it to the

wxRadioButton* type and fetch the label, representing the

color.

void Builder::onClick3(wxCommandEvent& event) {
 //get the object that caused the event
 auto winobj = event.GetEventObject();
 //cast to wxRadioButton*
 wxRadioButton* cbut = (wxRadioButton*)winobj;
 wxString lbl = cbut->GetLabelText();
 lbl.LowerCase();
 rightPanel->SetBackgroundColour(wxColor(lbl));
 rightPanel->Refresh();
}

Choices and Listboxes 168

ListBoxes

ListBoxes in wxWidgets are pretty easy to use. In fact, they are

simpler than the ones in tkinter. You can create a simple ListBox:

lbox = new wxListBox(panel, wxID_ANY,
 wxDefaultPosition, wxSize(150, 100),
 0, NULL, wxLB_SINGLE);

Instead of a specific size, you could put in wxDefaultSize, but

the default sizes are often pretty big. There are a number of

styles you can choose from for a listbox, and some of them can

be ORed together where this makes sense.

• wxLB_SINGLE (equals 0) – can select a single entry

• wxLB_MULTIPLE – can select more than one entry

• wxLB_EXTENDED - can select more using the Shift

and Ctrl keys

• wxLB_HSCROLL – create horizontal scroll bar for long

entries(Windows only)

• wxLB_ALWAYS_SB – always show a vertical scroll bar

• wxLB_NEEDED_SB – create a vertical scroll bar if

needed (default)

• wxLB_NO_SB – never create a vertical scrollbar

(Windows and GTK only)

• wxLB_SORT – sort the list

If you don’t need any of those options, you can leave out the last

three arguments:

lbox = new wxListBox(panel, wxID_ANY,
 wxDefaultPosition, wxSize(150, 100));

You can also load some entries into the listbox in the constructor:

wxString choices[2] = { "Anne", "Betty" };
lbox = new wxListBox(panel, wxID_ANY,
 wxDefaultPosition, wxSize(150, 100), 2, choices,
 wxLB_MULTIPLE);

Choices and Listboxes 169

As shown, you must indicate the number of strings the listbox is

to load (here, 2) along with the array of strings.

The other way to add strings to the listbox is using the Append

method:

 lbox->Append(wxT("Fred"));
 lbox->Append(wxT("Sally"));
 lbox->Append(wxT("Sam"));
 lbox->Append(wxT("Bridget"));

Together, the two of these produce the listbox in Figure 14-4.

Figure 14-4 –Single(a) and multiselect(b) listboxes

To get the line or lines selected in the ListBox, you have two

choices. For a single selection listbox, you get the index of the

line selected, and then fetch the string at the position if it is a

positive number. If it is negative, no line has been selected:

// get the index and fetch that line
int index = lbox->GetSelection();
 if (index >=0)
 title->SetLabel(lbox->GetString(index));

If you try to fetch a string with a negative index, an error will

occur.

The second approach is for multi-select listboxes, but in fact

works for single select just as well. You create a wxArrayInt

Choices and Listboxes 170

object and pass it to the GetSelections method. It returns the

number of lines selected and the indexes of those selections in

the ArrayInt object. You fetch each one using the Item method of

that array:

//This will work with the multiple and the single versions
 wxArrayInt selections; //create the empty array
 int count = lbox->GetSelections(selections); //load it
 string text = ""; //append all selections here
 for (int i = 0; i < count; i++) {
 int index = selections.Item(i);
 text += lbox->GetString(index) + " ";
 }
 title->SetLabel(text); // set all the text in label

The resulting display is shown in Figure 14-4b.

It is important to note that you cannot use the GetSelection

method in a multi-select listbox. It will cause an error.

CheckListBoxes

You can use the same code to display a listbox with checks by

calling wxCheckListBox instead of the wxListBox. The only

difference is for each element, you have an isChecked method

you can call. Checks are separate from whether a line is selected

or not. This is illustrated in Figure 14-5.

Figure 14-5 -- Example of a CheckListBox

Choices and Listboxes 171

The StateLister Application

Now that we’ve spent some time on listboxes, let’s consider a

more elaborate case, where we have an array of State classes that

we create by reading in the states.txt file. Each state has a name,

abbreviation, capital and founding date. The app looks like that

in Figure 14-6.

Figure 14-6 -The StateLister app

The State class is pretty obvious. It stores those four properties

for each state and lets you fetch them from each instance using

getter methods. The constructor for each State instance uses our

StrFuncs utility class to split up the comma-separated list and put

the four values into the instance variables:

State::State(std::string line) {
 vector<std::string> tokens =
 Strfuncs::split(line, ",");
 name = tokens[0];
 abbrev = tokens[1];
 date = tokens[2];
 capital = tokens[3];
}
string State::getName() { return name; }
string State::getAbbrev() { return abbrev; }
string State::getDate() { return date; }
string State::getCapital() { return capital; }

Choices and Listboxes 172

And the surrounding StateList class reads each line, creates a

State instance and stores it in a vector where you can easily

retrieve it.

//reads and keeps the State list
class StateList {
private:
 vector<State*> states;

public:
//read in the States file and store each State in a vector
 StateList(string fileName) {

 ifstream myfile(fileName);
 string line;
 if (myfile.is_open()) {
 while (getline(myfile, line)) {
 states.push_back(
 new State(line));
 }
 myfile.close();
 }
 else cout << "Unable to open file";
 }
 //get the whole vector
 vector<State*> getStates() {
 return states;
 }
 //get a single state
 State* getState(int index) {
 return states[index];
 }
};

Using a Mediator Class

This program consists of s number of classes and widgets, and it

is probably time to consider using a Mediator class to handle the

interactions between them. The Mediator knows about the

StateList and State classes as well as the listbox and the four

Choices and Listboxes 173

labels in the right panel. So when there is a click on the listbox,

the OnClick event just tells the Mediator to handle it.

void MyFrame::onClick(wxCommandEvent& ev) {
 med->listClick(ev);
}

Then, the Mediator fetches the correct State from the StateList

class and loads the labels:

void Mediator::listClick(wxCommandEvent& ev) {
 //first get the entry clicked on
 int index = stateListBox->GetSelection();

 //then get the state object at that index
 State* state = stateList->getState(index);

 //load the labels with that State's data
 lbName->SetLabelText(state->getName());
 lbAbbrev->SetLabelText(state->getAbbrev());
 lbDate->SetLabelText(state->getDate());
 lbCapital->SetLabelText(state->getCapital());
}

The only real overhead in using a Mediator is passing the

variables it needs into the Mediator class. Some of this happens

in the constructor:

med = new Mediator(stateList);

and the rest in a couple of set methods:

//read in states
 StateList* sList = new StateList("States.txt");
 med->setStateList(sList);
 med->setLabels(lbName, lbAbbrev, lbDate,
 lbCapital);

And the Mediator loads the listbox from the StateList vector:

void Mediator::setStateList(StateList* slist) {
 stateList = slist;

//get the vector and load the listbox
 vector<State*> states = stateList->getStates();

Choices and Listboxes 174

 for (int i = 0; i < states.size(); i++) {
 stateListBox->Append(
 wxString(states[i]->getName()));
 }
}

This takes the complexity of the loading and clicking out of the

Builder, which is only supposed to create the GUI and puts all

the interactions in a single place: the Mediator. As your GUI

programs become more complex this Mediator Design Pattern is

an ideal way to group your GUI and other object interactions.

The ComboBox

The combo box (Figure 14-7) is pretty much the same as a

regular list, except that is drops down instead of taking up a lot

of space all the time:

Figure 14-7 -- The state list using a combo box

Loading the combo box is just the same as for a regular listbox:

Choices and Listboxes 175

// create a vector list of State objects
// and then insert the names of the states in the combobox
 std::vector<State*> states = sList->getStates();
 for (int i = 0; i < states.size(); i++) {
 stateList->Append(
 wxString(states[i]->getName()));

 }

The only other difference is the name of the click event:

 //connect item click to the onClick method
 Bind(wxEVT_COMBOBOX, &MyFrame::onClick, this);

Checkboxes

The wxCheckBox is very similar to the wxRadioButton, except

that checkboxes are not grouped and you can select as many

boxes as you want. Since they are not grouped, there is no

convenient way to iterate through them to see what has been

checked. Therefore, most people keep a vector with pointers to

the checkboxes so you can quickly find out which are checked.

In this pizza ordering example (Figure 14-8), we click on the

checkboxes and the ordered toppings appear in the righthand

listbox.

Figure 14-8 --Pizza ordering using check boxes.

Choices and Listboxes 176

Note that there is no “Get” or “Order” button. Clicking on any

checkbox immediately adds that topping to the list. There are a

couple of ways you can do this. Once is to Bind each checkbox

to the OnClick event handler, but a simpler way is to simply bind

the left panel to the checkbox click event, since the events

propagate up into the container that hold them.

We create the checkboxes in the code below.

 leftSizer = new wxBoxSizer(wxVERTICAL);
 leftPanel->SetSizer(leftSizer);
 leftSizer->AddSpacer(20);
 addCheckBox("Pepperoni", leftSizer);
 addCheckBox("Sausage", leftSizer);
 addCheckBox("Mushroom", leftSizer);
 addCheckBox("Onion", leftSizer);
 addCheckBox("Red peppers", leftSizer);
 wxCheckBox* pine =
 addCheckBox("Pineapple", leftSizer);
 pine->Disable();
 Bind(wxEVT_COMMAND_CHECKBOX_CLICKED,
 &Builder::OnClick, this);

Note that in honor of the internet joke that “pineapple does not

belong on pizza,” we disable that choice. The addCheckBox

method below adds the checkbox to the sizer and to the vector

where you can check out its contents later.

//Adds a checkbox to the left panel's sizer
wxCheckBox* Builder::
addCheckBox(string label, wxSizer* leftChecks) {
 wxCheckBox* cb1 = new wxCheckBox(leftPanel,
 wxID_ANY, wxString(label));
 leftChecks->Add(cb1);
 leftChecks->AddSpacer(5);
 checks.push_back(cb1); //and to the vector list
 return cb1;
};

Finally, the OnClick event clears the listbox and refills it with the

currently check items:

//fills list with currently checked items
void Builder::OnClick(wxCommandEvent& event) {

Choices and Listboxes 177

 wxCheckBox* cb1;
 orderList->Clear(); //clear the listbox

 //and re-fill it from the checkboxes
 for (int i = 0; i < checks.size(); i++) {
 cb1 = checks.at(i);
 if (cb1->IsChecked()) {
 wxString label = cb1->GetLabel();
 orderList->InsertItems(1, &label, 0);
 }
 }
}

Checkbox styles

You can change the checkbox styles with these flags, some of

which can be ORed together:

• wxCHK_2STATE – creates standard 2 state checkbox

• wxCHK_3STATE – creates 3 state checkbox

• wxCHK_ALLOW_3RD_STATE_FOR_USER – user

can click all 3 states

• wxALIGN_RIGHT – puts label to left of checkbox

Figure 14-9 shows all three staes and both alignments.

Figure 14-9 --All 3 states of checkbox, and both alignments

Choices and Listboxes 178

To get all 3 states, you must OR the second the third flags

together and include the two default placeholders before

specifying the flags.

wxCheckBox* cbut =
 new wxCheckBox(pnl, wxID_ANY, wxString(label),
 wxDefaultPosition, wxDefaultSize,
 wxCHK_3STATE|wxCHK_ALLOW_3RD_STATE_FOR_USER);

For a 3-state checkbox, there are 3 values,

wxCHK_UNCHECKED, wxCHK_CHECKED, and

wxCHK_UNDETERMINED. You can access these with the

Get3StateValue and Set3StateValue methods, and you can

change the state of the checkbox by using the Set3StateValue

method to change he state of the checkbox’s operation.

Displaying tables in a grid

The wxGrid widget is a really flexible, easy-to-use table display

that can even let you edit the cells in real time. In Figure 14-10

we see how it looks in its simplest form:

Figure 14-10 -- a wxGrid display of the states

Choices and Listboxes 179

Creating this grid amounts to specifying the grid dimensions and

setting the column widths:

//create the grid, 50 x 4
 stateGrid = new wxGrid(leftPanel, wxID_ANY,
 wxDefaultPosition, wxSize(400, 225));
 stateGrid->CreateGrid(50, 4);
 stateGrid->SetColSize(1, 40); //set column sizes
 stateGrid->SetColSize(3, 60);
 stateGrid->SetRowLabelSize(30);
 pnlSzr->Add(stateGrid);

Then to load it, we use the familiar States class to read in the

states.txt file and then get the states one at a time and load each

row:

// and then insert the values for the states into the grid
vector<State*> states = sList->getStates();
for (int i = 0; i < states.size(); i++) {
 stateGrid->SetCellValue(i, 0,
 wxString(states[i]->getName()));
 stateGrid->SetCellValue(i, 1,
 wxString(states[i]->getAbbrev()));
 stateGrid->SetCellValue(i, 2,
 wxString(states[i]->getCapital()));
 stateGrid->SetCellValue(i, 3,
 wxString(states[i]->getDate()));
 }

By default, the cells are editable unless you call the grid’s

DisableCellEditControl() method.

To save the results of any cell edit, you need to catch that event

by Binding it to some code to save the new value.

//connect item click to the onClick method
 Bind(wxEVT_GRID_CELL_CHANGED,
 &MyFrame::saveClick, this);

Then, to save that edit you need to fetch that string and put it

back into the state array:

//Save data for selected state
void Mediator::saveState(wxGridEvent& gev) {
 int row = gev.GetRow();

Choices and Listboxes 180

 int col = gev.GetCol();
 //get the changed cell text
 string gtext = stateGrid->GetCellValue(row,
 col).ToStdString();
 State* state = stateList->getState(row);

 //convert column number to a property
 //and save it back into the state vector
 switch (col) {
 case 0: state->setName(gtext); break;
 case 1: state->setAbbrev(gtext); break;
 case 2: state->setCapital(gtext); break;
 case 3: state->setDate(gtext); break;
 }
}

Now, that data are only in memory, and to save it in a file, you

must click on that Save button. It will run through the entire

vector of states, convert each to a comma-separated list and store

it in a new file, in this case states1.txt.

void Mediator::saveStates() {
 //save all the states to a new file
 ofstream stFile("states1.txt");
 vector<State*> stateVector =
 stateList->getStates();
 for (auto iter(stateVector.begin());
 iter != stateVector.end(); ++iter) {
 State* st = *iter;

 //get comma sep string
 string output = st->getLineString();
 stFile << output << endl; //and write it
 }
 stFile.close();
}

Selecting Grid regions
The wxGrid widget lets you select any region of cells and do

with it what you will. In we show a selected region, and the

popup window of the data in those cells:

Choices and Listboxes 181

Figure 14-11 --wxGrid region selection and popup window showing that data

void Mediator::rangeClick(wxCommandEvent& ev) {
 //strings saved here
 std::vector <wxString> tokens;

 //go through all the rows
 for (int i = 0;
 i < stateGrid->GetNumberRows(); ++i) {
 if (stateGrid->IsInSelection(i, 0)) {
 //go through each column in that row
 for (int c = 0;
 c < stateGrid->GetNumberCols();
 c++) {
 if (stateGrid->IsInSelection(i, c)) {
 tokens.push_back
 (stateGrid->GetCellValue(i, c));
 }
 }
 }
 }
 //now create a Message Dialog with the result
 string message = "";
 for (int i = 0; i < tokens.size(); i++) {
 message += tokens[i] + ", ";
 }
 wxMessageDialog* dial = new wxMessageDialog(NULL,

Choices and Listboxes 182

 wxString(message), wxT("Cells selected"), wxOK);
 dial->ShowModal();
}

Other wxGrid features
You can specify any cell as being a number cell with

SetColFormatNumber, SetColFormatFloat, or

SetColFormatBool.

The Tree widget

The wxTreeCtrl represents a tree with the root at the top and

branches of data under it. Creating the tree visual is extremely

easy: the more involved part might be representing the data

behind it. Skipping, that we’ll just create a tree (Figure 14-12)

using a couple of state’s data:

Figure 14-12 --The Tree control with two states shown

The code amounts to creating a root and adding children to it:

panel = new wxPanel(frame, wxID_ANY);
 wxBoxSizer* sizer = new wxBoxSizer(wxVERTICAL);
 panel->SetSizer(sizer);
 tree = new wxTreeCtrl(panel, wxID_ANY,
 wxDefaultPosition, wxSize(200, 200),
 wxTR_DEFAULT_STYLE, wxDefaultValidator,
 wxString("state tree"));

Choices and Listboxes 183

 sizer->Add(tree);

 wxTreeItemId rootId = tree->AddRoot("States");
 wxTreeItemId child =
 tree->AppendItem(rootId, "California");
 wxTreeItemId child1 =
 tree->AppendItem(child, "CA");
 tree->AppendItem(child1, "Sacramento");

 wxTreeItemId newRoot =
 tree->AppendItem(rootId,"Kansas");
 wxTreeItemId child2 =
 tree->AppendItem(newRoot, "KS");
 tree->AppendItem(child2, "Topeka");
 frame->Show();

As you can see, the Tree is extremely easy to use. While it isn’t

the default like in the Grid, it is possible to create a tree with

editable labels and edit events by using the

wxTR_EDIT_LABELS style when you create the tree widget.

Moving on

We’ve shown you how to create and use all the common widgets

in wxWidgets. Nearly all of them are easier to use than the

analogous controls in tkinter. In the following chapters we’ll

look at several other common tools that are analogous to ones

available on Python.

Example programs on GitHub

• Radiobuts.cpp – radio buttons with and without spacers

• Radioboxing.cpp – illustrates RadioBoxes.

• RadioColor.cpp – uses 3 onClick events

• RadioColor2.cpp – shows both scanning the list and

getting the button from the event

• SimpleListbox.cpp – single and multiselect and check

listboxes.

• StateLister – List box of state objects showing details

• StateListCombo – same as State Lister but using a

combo box

Choices and Listboxes 184

• PizzaChecker – Adds pizza orders from checkboxes to a

listbox

• Check3state.cpp – shows all 3 states of checkbox

• StateListGrid – shows the basic wxGrid display of states

• Treectrl.cpp – a simple Tree control widget example

Choices and Listboxes 185

Part II- Application Development

In this section we discuss libraries for mathematical

computations, plotting and connecting to databases.

For math computations we explain how to use the public domain

Armadillo library, which provides much the computational

features that you find in Python’s Numpy library, and which is

similar to Matlab in capabilities.

For plotting, we discuss both SciPlot and ROOT, which each

have advantages.

And finally, we discuss connecting to databases, with examples

connecting to SQLite and to MySQL. We end up developing a

framework which will work with either, even though the

underlying interface code is significantly different between the

two systems.

Choices and Listboxes 186

The Armadillo Math Library 187

15. The Armadillo Math Library

Armadillo is a C++ open-source linear algebra library that allows

you to manipulate matrices and carry out quite a number of

useful computations. It was developed by Conrad Sanderson and

Ryan Curtin at the University of Queensland and Griffith

University. The library is licensed under the relatively permissive

Apache license and the syntax of the library classes are

deliberately similar to those in Matlab, and much the same as the

classes in Numpy.

Much of Armadillo is built on the OpenBLAS (Basic Linear

Algebra Subprograms) and LAPACK (Linear Algebra Package)

libraries, here wrapped into useful classes. The library is

available for Windows, Macs and Linux. For experimentation

and initial development, Window may be easier, but the math

libraries run faster on Linux platforms. It also uses delayed

evaluation at compile time to increase computational efficiency.

Nearly all of the classes in Armadillo are implemented as

templates, and for that reason, you probably should avoid using

the C++ auto keyword.

Overview of Armadillo Classes

Armadillo contains hundreds of useful classes and functions,

briefly summarized here. The complete list is in the online

documentation.

• Matrix, Vector, Cube and Field classes

o Matrices, columns, rows, cubes and fields

o Determinant, sum, diagonal, transpose, fill with

random numbers, etc.

o Eigen decomposition, inverse, etc.

• Signal and Image Processing

o Convolution

o 1D and 2D FFT

o Interpolation

The Armadillo Math Library 188

o Polynomial fitting

• Statistics and Clustering

o Mean, covariance, correlation

o Principal component analysis

o Probability density function

Matrices

The Mat class is the fundamental dense matrix object in

Armadillo. They are stored column by column. You can create

matrices of any of the common types: double, float, complex

double, complex float, short, int long and unsigned. Here’s a

simple matrix creation command:

//constructing a matrix
 Mat<double> A (3,4);

However, Armadillo defines some simple matrix type names to

simplify your programming:

 mat = Mat<double>
 dmat = Mat<double>
 fmat = Mat<float>
 cx_mat = Mat<cx_double>
 cx_dmat = Mat<cx_double>
 cx_fmat = Mat<cx_float>
 umat = Mat<uword>
 imat = Mat<sword>

So, you can write more simply:

mat B(3, 4);

Matrices are created with all elements set to zero,

 but you can create them using several other patterns:

fill::zeros set all elements to 0

fill::ones set all elements to 1

The Armadillo Math Library 189

fill::eye set the elements on the main diagonal to 1 and off-

diagonal elements to 0

fill::randu set all elements to random values from a uniform

distribution in the [0,1] interval

fill::randn set all elements to random values from a

normal/Gaussian distribution with zero mean and unit

variance

fill::value(

scalar)
set all elements to specified scalar (Armadillo 10.6 and

later)

fill::none do not initialize the elements

Thus, this statement fills the matrix with random numbers

between 0 and 1:

mat D(5, 5, fill::randu); //uniform random distribution
D.print(); //print out matrix

giving you a 5x5 matrix of random numbers:

 0.8634 0.8296 0.1600 0.2330 0.6979

 0.8899 0.1792 0.7420 0.7058 0.3701

 0.3604 0.2807 0.7047 0.7213 0.1271

 0.4156 0.2088 0.1175 0.3593 0.2863

 0.9300 0.8655 0.7502 0.7527 0.2077

You can also perform the standard matrix algebra (add, subtract,

multiply, divide) in Armadillo:

mat E = D + D;

The usual rules apply: you can only add and subtract matrices of

the same dimensions, and to multiply or divide, the number rows

and columns in one must be the same as the number of columns

and rows in the other.

The Armadillo Math Library 190

 Columns and Rows

Each matrix column is essentially a one-dimensional matrix, and

since it is derived from the Mat class, most of the methods apply

to both columns and rows. Columns and rows are essentially

vectors, so they are also referred to by the names colvec and

rowvec. Like matrices, the columns and rows have typedefs

for each the common data types: colvec, dcolvec, fcolvec,

cx_colvec and so forth. They are also defined as vec, dvec, fvec,

cx_vec and so forth.

You can, of course get any single column or row using the .row

and .col matrix methods:

//extract a column and print it
 colvec q = D.col(0);
 q.print();

Matrix methods

But the great power of Armadillo lies in the methods you can use

on any matrix. There are many functions and operations in the

complete list in the documentation, but they include:

Matrix functions

Accu Sum matrix elements

Affmul Affine matrix multiplication

Conj Complex conjugate of each element

Cross Cross product of 2 matrices

Diagmat Generate diagonal matrix

Kron Kronecker tensor product

Norm Normalize vectors

Rank Rank of matrix

Trace Sum of diagonal elements

Trans Transpose of matrix. Also can use .t()

method.

Vectorise Flatten matrix into vector. Note spelling.

The Armadillo Math Library 191

Decompositions, Inverses and Equation Solvers

Chol Cholesky decomposition

Eig_sym Eigen decomposition of dense symmetric

matrix

Hess Upper Hessenberg decomposition

Inv Inverse of square matrix

Svd Singular value decomposition

Syl Sylvester equation solver

Signal and Image Processing

Conv 1 D convolution

Fft 1D fast Fourier transform and inverse

Fft2 2D FFT and inverse

Polyfit Fit a polynomial to a set of points

Polyval Evaluate polynomial

Matrix transpose

Let’s suppose we want to rotate a matrix by 90 degrees. The

trans method will do this for you. In the demo program below,

we create a random number-filled matrix when we click on the

Load button, and transpose it when we click on the Trans

buttons:

Figure 15-1 - 5 x 5 matrix filled with zeroes

The Armadillo Math Library 192

So, as before, the code to create the zero matrix is quite simple.

You can access matrices with zero-based indexing just as if they

were C++ arrays:

//create the matrix
void Mediator::loadClicked() {
 //create a 5x5 matrix
 A.set_size(5, 5);
 A.fill(fill::randu);
 loadGrid(A);
}

We load the grid by moving the elements one by on the usual

indexing code. Note that when you access values in a matrix, the

indices are enclosed in parentheses (C(i, j)), not brackets,

since these are arguments to internal methods in the Mat object:

// and copy it into the wxWidgets grid:
void Mediator::loadGrid(mat C) {
 for (int i = 0; i < C.n_rows; i++) {
 for (int j = 0; j < C.n_cols; j++) {
 numGrid->SetCellValue(i, j, to_string(C(i,
j)));
 }
 }
}

The transpose
You could write:

mat B = trans(A);

or, you can use the more compact method built into the Mat

class:

mat B = A.t();

It is this latter method we use in the demo program:

void Mediator::transposeClicked() {

The Armadillo Math Library 193

 mat B = A.t(); //compute transpose
 loadGrid(B); //and load it
}

 The results are show in Figure 15-2 and Figure 15-3.

Figure 15-2 - matrix filled with random numbers.

Figure 15-3 Matrix transposed

The Fast Fourier transform

You use the Fourier transform` to convert from the time domain

to the frequency domain. For example, a plot of a sine wave is a

plot of signal versus time. The FFT can quickly convert to signal

versus frequency, where there will be a single peak for each

frequency in the data.

In Figure 15-4, we show a decaying sine wave, representing a

single frequency. We added the exponential decay, because the

resulting FFT peak will then be a bit wider and easier to see in

The Armadillo Math Library 194

Figure 15-5. As you can see, there is one peak representing the

single frequency on a plot of signal versus frequency.

The code for calculation the FFT is just as simple as you might

think:

 vec sinedata = vec(waveData); //convert array of floats
 cx_vec spec = fft(sinedata); //complex result

You start with an array of floats representing the sine data and

convert it to a vec or colvec, which means he same thing in

Armadillo. Then you call the fft function, which returns a vector

of complex numbers. Usually, the input array will have a

dimension of a power of 2 for the FFT to work mask efficiently.

In the example shown below, we generated a decaying sine wave

having 16,384 points. The result of the FFT is an array (vector)

of 8192 complex numbers, each having a real and imaginary

part. In plotting the result, we simply create an array from the

real parts of each complex number as shown in Figure 15-5. So,

the result is an 8,192 point real array.

Figure 15-4 Decaying sine wave

Figure 15-5 - FFT of decaying since

wave

The code to create that array is simply:

The Armadillo Math Library 195

 size_t peakCount = spec.size()/2;
 peakPoints = new wxPoint[peakCount];
 double yval = 0;
 for (size_t x = 0; x < peakCount; x++) {
 yval = spec[x].real()/50;
 int y = Height - int(yval/2)- 300; // wave height
 int xcoord = int(x * (float(Width) /
 float(peakCount))) + 10; // x
 wxPoint pt(xcoord, y); //display array
 peakPoints[x] = pt;
 }

 Refresh();

The scaling constants 50, 2 and 300 were determined

empirically. In the following chapter, we’ll show how to

compute them generally.

Curve fitting

One very nice feature buried in Armadillo is polynomial curve

fitting. It will generate a polynomial of any order to fit a set of x-

y data. For example, Figure 15-6 shows data on bee populations

from the USDA. However, it is not of bee populations, but of bee

colony deaths, where a decline in values is actually good news. It

would be nice to fit a line to these data to find out the actual rate

of decline.

The Armadillo Math Library 196

Figure 15-6 - Data showing declining bee colony deaths over time.

To fit a set of x-y data points to a curve, you specify a colvec for

x and another for the y data, and the order of the polynomial to

fit the data. Polyfit returns the coefficients for a n-order

polynomial in the form:

𝑦 = 𝑝0𝑥𝑛 + 𝑝1𝑥𝑛−1
+ 𝑝2𝑥𝑛−2

+ ⋯ + 𝑝𝑛−1 + 𝑝𝑛

For a straight line, which has the form

𝑦 = 𝑚𝑥 + 𝑏

Or in this case,

𝑦 = 𝑝0𝑥1 + 𝑃1

This is thus a first order polynomial and the function call looks

like this:

vec p = polyfit(arx, ary, 1);

The vector p then contains two elements equivalent to the slope

and intercept, or m and b. For the data on bee populations, you

then calculate y at x0 and at xn-1. The fitted line looks like this:

The Armadillo Math Library 197

Figure 15-7 - Fitted plot of bee colony deaths, 2007-2017

This final plot was drawn with Sciplot, and we’ll explain it in the

following chapter.

Installing and running Armadillo programs

You can download the Armadillo tar.xz file from it’s sourceforge

website1 and unzip it in the usual way. For all platforms, consult

the README.MD file in the armadillo root directory. For

Windows, this is most of the job, but you must create the

armadillo library by changing to the outer directory which might

be something like c:\armadillo-11.2.4, and typing

Cmake .

This invokes the Cmake build package to create the library files.

Be sure that you type the dot separated from the Cmake

command by one space.

Running the example program
If you are using Visual Studio on Windows, you will find under

the examples folder the files

Example1.cpp
example1_win64.sln

and

The Armadillo Math Library 198

example1_wind64.vcxproj

If you open the .sln solution file with Visual Studio, and run the

example, it will run a whole list of simple armadillo commands

in a console window. You can add or modify this example code

to see what some of the other functions and classes do.

Running new armadillo programs
In most cases, you can create a windows project, or any other

platform, by setting your compiler to find the armadillo include

files at c:\armadillo 11.x.y\include and the library files a

c:\armadillo\examples\lib_win64.

There are a few cases where the linker will fail, and polyfit is

among them. For such cases, create a new, empty project

directory wherever Visual Studio is keeping projects. This is

usually

C:\Users\your-name\source\repos

Copy the above three files into that new directory, open it using

Visual Studio, and edit the example1.cpp to create the program

you want to run. Rename it to whatever you want to call it and

run it.

Example programs on GitHub

1. ArmSimp.cpp – simple examples used in this chapter

2. Armamatrix.cpp – Matrix transpose display

3. SineFFT – creates decaying sine wave and performs

FFT, displays both

4. Fitbees – plots bee colony failure data by year and fits

straight line to it.

References

1. https://arma.sourceforge.net/

2. https://arma.sourceforge.net/docs.html

The Armadillo Math Library 199

3. Conrad Sanderson and Ryan Curtin.

Armadillo: a template-based C++ library for linear

algebra.

Journal of Open Source Software, Vol. 1, pp. 26, 2016.

4. Conrad Sanderson and Ryan Curtin.

A User-Friendly Hybrid Sparse Matrix Class in C++.

Lecture Notes in Computer Science (LNCS), Vol. 10931,

pp. 422-430, 2018.

5. Morten Hjorth-Jensen, Data analysis and Machine

Learning Lectures: Linear Algebra, Handling of

Arrays.

https://mhjensen.github.io/MachineLearningMSU-

FRIB2020/doc/pub/Linalg/html/Linalg.html

6. Jon Entine, Beepocalypse Myth Handbook, Genetic

Literacy Project, http://bit.ly/3WwmUiN

The Armadillo Math Library 200

Plotting in C++ 201

16. Plotting in C++

In Python, you can use the Matplotlib library to plot data in a

variety of ways. In Linux and the MacOS, there is an interface to

Matplotlib that requires that you have Python installed as well,

but there is no such version for Windows. So, in this chapter,

we’ll take a look at three methods of plotting data that work very

well.

You can create plots of your data in C++ in any number of ways.

For example, you could plot that honey bee data yourself using

the wxWidgets library. The simplest way is just to create a Frame

and draw in it. The only tricky part of drawing in wxWidgets is

that you have to create a Paint event handler that redraws the

screen whenever necessary. So, part of your constructor method

is connecting to the paint event handler, which is called

whenever the program needs to redraw the screen:

//frame constructor
LinePlot::LinePlot(const wxString& title)
 : wxFrame(NULL, wxID_ANY, title, wxDefaultPosition) {
 SetBackgroundColour(0xefefef);
 SetSize(WIDTH, HEIGHT); //set window size

 //paint event is called to redraw window
 this->Connect(wxEVT_PAINT,

wxPaintEventHandler(LinePlot::OnPaint));
 this->Center();
}

The paint event handler, then becomes the place where you do all

your drawing.

Doing all this plotting yourself is kind of a fussy job: you have to

create an array of points and find the x and y max and min to

calculate the scale factors to convert the data points to pixel

positions yourself. We also allow a 5% border all around, so

there is an x-edge and y-edge value to compute as well.

Plotting in C++ 202

We start by creating a vector of wxPoint objects, each of which

has a public x and y method to get the actual data value:

vector <wxPoint*> LinePlot::createData() {
 vector <wxPoint*> points;
 // create vector of x,y point coordinates
 points.push_back(new wxPoint(7, 32));
 points.push_back(new wxPoint(8, 35));
 points.push_back(new wxPoint(9, 29));
 :
 :
 findBounds(points); //calculates the scale
 return points;

 }

We then have routines xcalc and ycalc that use those scaling

factors to convert the data points to pixels:

//convert data point to x pixel position
int LinePlot::calcx(double xval) {
 int newx = (xval - xmin) * xscale + xedge;
 return newx;
}

With this in mind, our Paint event handler is shown below. You

do your drawing using a wxPaintDC device context. This code

illustrates the one for plotting on a screen. It is possible to use

the same code with other device contexts to create hard copies or

Postscript files.

//all the work happens in the Paint event
void LinePlot::OnPaint(wxPaintEvent& event) {
 wxPaintDC dc(this);
 wxSize sz = this->GetSize();
 width = sz.GetWidth();
 height = sz.GetHeight();
 bheight = height - 25; //height of title bar

 dc.SetBrush(*wxBLACK_BRUSH); //fill color
 //dc.SetPen(wxPen(wxColor(0,0,255), 1)); //blue color
 vector <wxPoint*> pts = createData();

 // draw lines between points and add marker circles
 //get first point outside loop

Plotting in C++ 203

 wxPoint* p = pts[0];
 int x1 = calcx(p->x); //fetch and scale first point
 int y1 = calcy(p->y);
 dc.DrawCircle(x1, y1, 3); //draw the first marker

 for (int i = 1; i < pts.size(); i++) {
 wxPoint* p1 = pts[i]; //fetch and scale point
 int x2 = calcx(p1->x);
 int y2 = calcy(p1->y);
 dc.DrawCircle(x2, y2, 3); //Draw the marker
 dc.DrawLine(x1, y1, x2, y2); //and the line
 x1 = x2; //copy current point to starting
 y1 = y2;
 }
}

The resulting plot of this bee data at first looks like the data in

Figure 16-1

Figure 16-1 - Upside down plot Figure 16-2 - Right side up plot

However, we forgot that the screen coordinates have (0, 0) in the

top left corner, while we need them in the lower left corner. We

can easily correct this, in the calcy routine:

int LinePlot::calcy(double yval) {
 int newy = bheight * 0.8 - (yval - ymin) *
 yscale + yedge;
 //int newy = (yval-ymin) * yscale + yedge;
 //incorrect
 return newy;
}

Plotting using DrawLines
PlotIn the above example, we loop through the data, calculating

the x and y scale and plot each point. The wxWidgets package

Plotting in C++ 204

also allows you to plot the entire array in a single command

using the DrawLines method:

 dc.SetBrush(*wxBLACK_BRUSH); //fill color
 wxPoint* pts = createData1();

 // draw lines between points and add marker circles
 dc.DrawLines(DATASIZE, pts);

 for (int i = 0; i <DATASIZE; i++) {
 //and 3 pixel circle at each point
 dc.DrawCircle(pts[i], 3);
 }

This looks appealing, but it requires you to convert all the points

to the pixel scale in advance and store them in a fixed size array.

This is a bit clumsier than using a vector, so you may find it

more trouble than it’s worth.

So, as you can see, it is certainly possible to do quick and dirty

plotting just using the wxWidgets GUI, but it would be better if

we could use a plotting package where that work had already

been done. Of course, Python has very good plotting library built

into the language, called MatPlotLib. It would be nice if this

were accessible from C++, and there is such a library which calls

the Python MatPlotLib, called MatPlotLibcpp. It is available for

Linux and the Mac, but, unfortunately not for Windows. And

requiring that Python be available on your system as well may be

a drawback in production code.

There is also a project called Matplotlibplusplus created by Alan

Defreitas, which you can download from GitHub, and which has

a great deal of plotting functionality but a very steep learning

curve, where you must learn enough about the CMake package

to modify several Cmakelist.txt files that control which parts of

the interrelated packages you need to compile. Documentation

and support are quite limited.

Plotting in C++ 205

SciPlot

One of the best plotting packages for you to use in C++ is

SciPlot. SciPlot is really just a bunch of header files, because

under the covers, SciPlot calls the public domain gnuplot

package. Thus, you must install gnuplot as well as SciPlot. The

online documentation provides a number of tutorials illustrating

2D and 3D plotting.

It was not at all difficult to adopt one of the tutorials to plot our

fitted bee data as shown in Figure 16-3. Once you install the

SciPlot libraries, you must reference the SciPlot include files in

your program, but the coding is straight forward. Note that the

last line of the program writes out a PDF file of the plotted data.

To use SciPlot, you need to understand their Vec variable type.

It is actually just a short alias for the std::valarray class. This

class behaves much as a vector of doubles does, but valarray

supports element-wise mathematical operations and convenient

forms of indexing and slicing. We don’t need any of those in this

simple example, where it works like an array.

#include <sciplot/sciplot.hpp>
using namespace sciplot;

int main(int argc, char** argv) {
 // the bee plotting data
 Vec x = { 7,8,9,10,11,12,13,14,15,16,17 };
 Vec y = { 32,35,29,34,30,24,32,24,23,28,21 };

 // xy pairs describing the fitted line
 Vec xa = { 7,17 };
 Vec ya = { 33, 22.94 };

 // Create a Plot object
 Plot2D plot;

 // This disables the deletion of
 //the created gnuplot script and data file.
 plot.autoclean(false);

 // Plot the data and the fitted line
 plot.drawCurveWithPoints(x, y).label("bees");

Plotting in C++ 206

 plot.drawCurveWithPoints(xa, ya).label("fit");

 // Create figure to hold plot
 Figure fig = { {plot} };

 // Create canvas to hold figure
 Canvas canvas = { {fig} };
 canvas.size(800, 500);

 // Show the plot in a pop-up window
 canvas.show();

 // Save the plot to a PDF file
 canvas.save("beedata.pdf");
}

 Figure 16-3- Bee data plotted in SciPlot

You can, of course, write a program that uses armadillo for the

curve fitting we discussed in the previous chapter and plot the

result as well. The only tricky part is that armadillo uses arrays

called vec which are totally different from SciPlot’s Vec arrays,

and there is no simple conversion between them. Instead, you

have to start with the date in vec arrays and after doing the

fitting, make Vec arrays for SciPlot to use.

That is actually quite simple as we see here:

Plotting in C++ 207

//compute the two y values
 //for the first and last x points
 Vec xa = { 0, 0 };
 Vec ya = { 0, 0 };

 //calculate two points on the fitted line
 double y0 = m * x[0] + b;
 double ylast = m * x[size(x) - 1] + b;
 //the two x points
 xa[0] = x[0];
 xa[1] = x[size(x) - 1];
 //the two y points
 ya[0] = y0;
 ya[1] = ylast;

 //draw fitted straight line on graph
 plot.drawCurveWithPoints(xa, ya).label("fit");

ROOT

ROOT is a very sophisticated plotting package developed at

CERN for plotting physics data. ROOT can do standard xy plots

as well as some extremely powerful surface plots.

You can download precompiled versions of ROOT for nearly all

platforms, although the Windows version is nominally still in

beta. We have been using it without difficulties, however. Once

downloaded, it is a good idea to make ROOT part of your PATH,

so you can access it from anywhere on your computer. It is also

helpful to create an environment variable ROOTSYS the points

to the base directory of the package. You can use this variable to

define where the include and library files are located when you

create Visual Studio projects. You can then add

$(ROOTSYS)\include to your include directories and

$(ROOTSYS)\lib to your library directories of your project.

You can use ROOT in an interactive mode to plot data, or you

can write simple C++ programs that link to ROOT as well. In the

interactive mode, you start the ROOT command and tell it to run

little plotting programs. ROOT contains a C++-language

Plotting in C++ 208

interpreter for this step, so you don’t need to compile and link

every time you make a change.

The ROOT interpreter

The easiest way to familiarize yourself with ROOT, is by using

the interpreter. Then building the C++ code for the final product

gets much easier.

Start by selecting a working directory for your trials anywhere

on your computer, and use the plotdata1.txt file we provide, or

make your own. You just need a list of pairs of x and y values on

separate lines, like this:

trial data plotdata1

#x y
1.0 1.0
3.0 2.0
3.0 3.5
5.0 3.0
5.0 5.0
7.0 5.0
7.0 7.0
8.0 6.0

Then, start the ROOT interpreter, by just typing

Root

in a CMD window. This will give you the prompt

root[0]

There are a number commands you can give the ROOT

interpreter. Each of them begins with a dot: the three most

important ones are:

• .q - exit from the interpreter

• .L – load a C code file

• .x – execute a C code file

Plotting in C++ 209

First, we are going to create a TGraph object containing the

above data by typing:

TGraph gr("plotdata1.txt")

This creates a TGraph object, which holds one set of plotting

data. You can then tell it to plot the data by typing:

gr.Draw("LA")

This says to draw a line and the axes around it as shown in

Figure 16-4

Figure 16-4 -- ROOT line plot

 Figure 16-5 -- ROOT line plot with * markers

Plotting in C++ 210

If you add an asterisk to the command,

gr.Draw("LA*")

it draws the line with asterisks for each data point as shown in

Figure 1-5. You have a choice of a wide variety of markers that

you can define by number. For example, if you enter

gr.SetMarkerStyle(20)
gr.Draw("PLA")

you will get a plot with solid circles, (Figure 16-6). The

command letter “P” means plot using the current marker style.

Figure 16-6 -- Marker style 20, solid circle

There are dozens of marker styles, a few of which we show in

Table 16-1.

1 Dot

2 Plus

4 Open circle

9-19 Large dot of various sizes

20 Full circle

21 Square

22 Triangle up

23 Triangle down
Table 16-1- Marker style values in ROOT

The complete table is shown in Reference 9.

Plotting in C++ 211

Likewise, there are a large number of character modifiers to the

Draw method [217], some of which are shown in Table 16-2.

A Axis

L A simple polyline

* A star is drawn at each point

P The current marker is drawn at each point

B Draw a bar chart

I With B, makes bar start at bottom instead of 0
Table 16-2 - Draw method modifiers.

Writing C++ code for ROOT

You can, of course write complete C++ programs to generate

your plots, and save them as files. If you write code to run in the

ROOT interpreter, your C++ code must start with the needed

include files for ROOT, and contain a single function that has the

same name as the file itself. So the file plotlines.C contains a

single function named plotlines() as shown below:

#include "TF1.h"
#include "TApplication.h"
#include "TCanvas.h"
#include "TRootCanvas.h"
#include "TGraph.h"
#include "TLegend.h"
#include "TGFont.h"
#include "TPad.h"

// Draw a simple x-y plot
void plotlines() {
 auto c = new TCanvas("c1", "Demo example");
 auto gr = new TGraph("plotdata1.txt"); //read in file
 gr->SetTitle("Demo data"); //title on the plot
 gr->SetMarkerStyle(20); //filled circle marker
 gr->Draw("APL"); //plot axis and lines
 return 0;
}

As you can see, the function plotlines creates a canvas and puts

the text in title bar. It creates the TGraph object, which reads in

the file plotdata1.txt, creates a title, sets a marker type and draws

the plot.

Plotting in C++ 212

To use this code you can simply load the program using the “.L”

command and run the function:

.L plotlines.C
plotlines()

Or, you can execute the file in a single step by using the “.x”

command:

.x plotlines.C

You can also run this function from the CMD command line

without starting the ROOT interpreter directly by typing

root -x plotlines.C

Writing ROOT code for a C compiler

If you want to actually compile and run this program as a stand-

alone executable, you simply change the name of the function to

main(). Then, the code looks like this:

#include "TF1.h"
#include "TApplication.h"
#include "TCanvas.h"
#include "TRootCanvas.h"
#include "TGraph.h"
#include "TLegend.h"
#include "TGFont.h"
#include "TPad.h"

// Draw a simple x-y plot

int main(int argc, char** argv) {

 TApplication app("app", &argc, argv);
 auto c = new TCanvas("c1", "Demo example");
 auto gr = new TGraph("plotdata1.txt"); //read in file
 gr->SetTitle("Demo data"); //title on the plot

 gr->SetMarkerStyle(20); //filled circle marker
 gr->Draw("APL"); //plot axis and lines
 c->Print("demo.pdf"); //save PDF of plot
 app.Run(); //run the plotting window
 return 0;
}

Plotting in C++ 213

Note that this code is a console program, not a Windows

program, and is therefore much easier to write. ROOT creates

windows for the resulting plots from your console application.

Note that you can save a PDF of the plot with a single statement.

There are about a dozen or so possible output file formats that

you can choose (such as ps, png, and jpeg) simply by varying the

file extension [10]. And finally, note that you have to create a

TApplication object, and run it when all the graphics have been

created.

In Visual Studio, you need to make sure that the include and

library paths are set as we described above, and that the

conformance mode is set to “no /permissive.”

Error bars

You can easily create x-y plots that include error bars in both the

x and y directions. TO do this, you expand the data file to

include columns for the x-error and y-error of each data point. In

this example we made the x-errors zero so that the y errors stand

out. We also reduce the point marker to a single small dot to

reduce visual confusion. The error data file looks like this:

trial data plotdataerr1
#x xerr yerr
1.0 1.0 0 .2
3.0 2.0 0 .1
3.5 3.5 0 .3
5.0 3.0 0 .05
5.5 5.0 0 .1
7.0 5.0 0 .14
7.5 7.0 0 .2
8.0 6.0 0 .3

In the code, we simple change the graphic object to

TGraphErrors instead of TGraph:

auto gr = new TGraphErrors("plotdataerr1.txt");

The program is otherwise unchanged. The resulting error plot is

shown in Figure 16-7.

Plotting in C++ 214

Figure 16-7 -Error bars in y direction

Plotting multiple lines in ROOT

To plot the bee die-off data in ROOT, we create three objects: a

TGraph for the bee data, a TGraph for the fitted line, and a

TLegend box for the line color and marker legend. Note that we

plot the Bee data including the axes (AL*), but we plot the fitted

line without redrawing the axes (LP). The colors are set using the

constant names shown in the TColor description [11].

You create a legend box using a size that is the fraction of the

size of the window, here 0.2 by 0.3. You then add the two entries

using the relevant TGraph variable and the text describing it. The

legend box location is computed when the data are drawn.

However, you can drag the legend box to a new position using

your mouse before saving a hard copy.

The complete code for plotting the bee data is:

#include "TF1.h"
#include "TApplication.h"
#include "TCanvas.h"
#include "TRootCanvas.h"
#include "TGraph.h"
#include "TLegend.h"
#include "TGFont.h"

Plotting in C++ 215

#include "TPad.h"

int main(int argc, char** argv) {
 TApplication app("app", &argc, argv);

 //the bee data
 double x[11] = { 2007,2008,2009,2010,2011,
 2012,2013,2014,2015,2016,2017 };
 double y[11] = { 32, 35, 29, 34, 30,
 24, 32, 24, 23, 28, 21 };

 //create bee population die-off graph
 TGraph* gr1 = new TGraph(11, x, y);

 gr1->SetLineColor(kBlue + 1);
 gr1->SetTitle("Bee population die-off");
 gr1->Draw("AL*");

 // create the line that fits the data
 double xfit[2] = { 2007,2017 };
 double yfit[2] = { 33, 22.9 };
 TGraph* gr2 = new TGraph(2, xfit, yfit);
 gr2->SetLineColor(kOrange);
 gr2->SetMarkerStyle(21);
 gr2->SetMarkerColor(kOrange);
 gr2->Draw("LP");

 // create the legend
 TLegend* legend =
 new TLegend(0.2, 0.1, "", "brNDC");
 legend->AddEntry(gr1, "bee data");
 legend->AddEntry(gr2, "bee fit");
 legend->Draw();

 app.Run(); //run the plotting window
 return 0;
}

And the actual plotted data is shown in Figure 16-8.

Plotting in C++ 216

Figure 16-8 - ROOT plot of bee die-off data

Example programs on GitHub

1. wxBeePlotVector – plotting bee data from a vector

2. wxBeePlotArray – plotting using an array and

DrawLines

3. splottest – Plotting using SciPlot

4. fitbees – curve fitting of bee data combined with SciPlot

plotting

5. plotlines.C – Plotting simple x-y data using ROOT

6. plotlineserr.C – Plot lines with error bars

7. RootTestPlot – Plotting same fitted bee data using

ROOT

References

1. wxWidgets drawing --

https://docs.wxwidgets.org/3.1.4/classwx_d_c.html

2. MatPlotLib for C++ -- https://matplotlib-

cpp.readthedocs.io/en/latest/

Plotting in C++ 217

3. Matplotplusplus --

https://alandefreitas.github.io/matplotplusplus/

4. SciPlot -- https://sciplot.github.io/

5. Installing SciPlot-- https://sciplot.github.io/installation/

6. GnuPlot -- http://www.gnuplot.info/

7. Root reference -- https://root.cern/doc/v626/index.html

8. Root plotting options --

https://root.cern.ch/doc/master/classTGraphPainter.html

9. Root marker table --

https://root.cern.ch/doc/master/classTAttMarker.html

10. Root print file types --

https://root.cern.ch/doc/master/classTPad.html

11. Root colors -

https://root.cern.ch/doc/master/classTColor.html

Plotting in C++ 218

Databases in C++ 219

17. Databases in C++

Relational databases are an important part of the way we store

and connect data in both business and science. A relational

database consists of a series of tables that are connected to each

other using integer keys. To see how this works, let’s look at the

three tables in our groceries database. Here, the displays are from

SQLite Studio.

Figure 17-1 -Food table Figure 17-2 -Stores table

The tables in Figure 17-1 and Figure 17-2 show a table of foods

and a table of stores, each with a number ley column on their

left.

Now, if we want to create a table of prices in each of the three

stores, we wouldn’t repeat the food names and store names.

Instead, we’d simply refer to them by their key number. So line 1

of our price table shown in Figure 17-3 indicates the Apples (1)

at Stop and Shop(1) cost $0.27 each.

Databases in C++ 220

Figure 17-3 - Price table

While these are the names of real stores, the actual prices are

entirely fictional.

If you wanted to generate a report of the prices by food or store,

you use the SQL (Structured Query Language) of the database to

create the report. For example,

select foodname, storename, price from
foods, stores, prices
where foods.foodkey= prices.foodkey and
stores.storekey = prices.storekey

will give you a list of the foods and prices at each store: some of

them being:

Apples Stop and Shop 0.27
Oranges Stop and Shop 0.36
Hamburger Stop and Shop 1.98
Butter Stop and Shop 2.39
Milk Stop and Shop 1.98
Cola Stop and Shop 2.65
Green beans Stop and Shop 2.29

Although the complete result has 21 items in it: seven for each of

three stores. You can also sort these differently by adding

order by foodname, price

Databases in C++ 221

to the end of the query, giving you in part

Apples Stop and Shop 0.27
Apples Village Market 0.29
Apples Shoprite 0.33
Butter Stop and Shop 2.39
Butter Village Market 2.99
Butter Shoprite 3.29
Cola Stop and Shop 2.65

These are, of course, relatively simple examples of using a

database.

SQLite

The SQLite database is an easy program to start with. It runs on

any platform and will probably run on your laptop or desktop

without much fuss. Each database SQLite uses is s single file

you tell it to open. It doesn’t have the overhead of some complex

client server process. Our little groceries database is called

groceries.db and is only 28 kb in size.

According to the SQLite web pages, SQLite is used on most

mobile phones, and can be used in games, televisions, cameras

and watches. It is also suitable for use on medium traffic web

sites. It is designed to be a zero maintenance database. On the

other hand, for large multiuser databases, you probably should

use MySQL or one of the major commercial database products.

Downloading SQLite
You can download SQLite from their website: versions are

available for just about all computers and operating systems. In

the case of Windows, choose the 64-bit version, and unzip the

file into a convenient location such as C:\sqlite64 or under

Program Files\sqlite64.

Once you have installed SQLite, you should set your PATH to

include its root directory. Then you can type the command

“sqlite3” and play with the command line interpreter. Most of its

commands start with a dot. So you could go to a directory where

Databases in C++ 222

you have a copy of our groceries.db database (downloadable

from our GitHub site).

Then you could type

Sqlite3
.open groceries.db
.tables

And get a list of the tables in this database.

foods prices stores

But these line commands can quickly be tedious. You will do a

lot better downloading SQLIteStudio and running it.

SQLiteStudio

SQliteStudio is a convenient cross-platform windowing interface

for viewing and changing the contents of an SQLite database.

Once you start it, you can open any existing database or create a

new one.

Figure 17-4 SQLiteStudiio window showing groceries database

Databases in C++ 223

In Figure 17-4, you see the window, showing the tables and

showing the results of an SQL query. This is a good place to

practice writing SQL statements before inserting them into any

program you may develop.

Programming SQLite in C++

To program in C++ to the SQLite interface,

1. you need to download the source code for SQLite and

snag a copy of the header file sqlite3.h. Put this in the

root directory of your sqlite3 program, or as we did, in a

subsidiary \include directory under C:\sqlite4.

2. You also need to create an sqlite3.lib file. In that same

root directory, you will find a file called sqlite3.def. You

can use it to create that lib file by typing in a command

window:

LIB /DEF:sqlite3.def /MACHINE:X64

Compiling using Visual Studio

Download the first example program sqlitest.cpp and create a

console project with that same name copy or paste this .cpp file

into your project.

1. You must add c:\sqlite64 to your project VC++ include

path and to the library directories as shown in Figure

17-5.

Databases in C++ 224

`

Figure 17-5 – Adding sqlite64 directory to include and library paths

2. Add c:\sqlite64 to the linker “Additional Library

Directories” as shown in Figure 17-6.

Databases in C++ 225

Figure 17-6 - Add sqlite3 directory to the Linker's Additional Library

Directories

3. You also need to add a reference to the LIB file we

created earlier. This goes under Linker Input/Additional

dependencies. See Figure 17-7.

Databases in C++ 226

Figure 17-7 - Adding the sqlite3.lib file

4. Your Visual Studio Project folder will now look like this:

sqlitest

 .vs

 sqlitest

 x64

 groceries.db

 X64

 Debug

 sqlite3.dll

Copy the groceries.db file into sqlitest\sqlitest and copy the

sqlite3.dll files into sqlitest\x64\Debug. The dll file must be in

the same directory where the compiled sqlitest.exe is put. This

way the runtime system will find that dll.

If you are uncomfortable with copying that DLL all over the

place while you writing programs for SQLite, you can instead go

Properties/Configuration/Debugging/Environment and add the

statement

Databases in C++ 227

PATH=c:\sqlite64;%PATH%

This is shown in Figure 17-8.

Figure 17-8 --Inserting PATH for runtime to find the SQLite3.dll

Example C++ code to connect to SQLite

The basic code to connect to an SQLite database starts with

opening a connection to a file:

 sqlite3* db;
 int rc;

 /* Open database */
 rc = sqlite3_open("groceries.db", &db);

Then, you enter a query by calling the sqlite3_exec function:

 char* zErrMsg = 0;
 const char* sql;
 const char* data = "Callback function called";

Databases in C++ 228

/* Create SQL statement */
 sql = "Select foodname, price, storename \
 from foods, prices, stores \
 where foods.foodkey = prices.foodkey \
 and stores.storekey = prices.storekey \
 order by foodname, price";

 /* Execute SQL statement */
 char* zErrMsg = 0;
 const char* sql;
 const char* data = "Callback function called";
 rc = sqlite3_exec(db, sql, callback,
 (void*)data, &zErrMsg);

Then, what happens is that the SQLite code calls the callback

function, which is where the results come back. It is called for

each row the query returns. In this example, the callback prints

out each row. Argc indicates the number of elements in the row,

which should match the number in the SELECT statement.

// the callback routine that SQLite calls for each row
int callback(void* data, int argc, char** colVal, char**
colName) {
 // each callback returns one row
 for (int i = 0; i < argc; i++) {
 //print each value in row
 std::cout << " " << colVal[i] << " ";
 }
 std::cout << std::endl; //end line for each row
 return 0;
}

The result printed out looks, in part like this:

Opened database successfully
 Apples 0.27 Stop and Shop
 Apples 0.29 Village Market
 Apples 0.33 Shoprite
 Butter 2.39 Stop and Shop
 Butter 2.99 Village Market
 Butter 3.29 Shoprite
 Cola 2.65 Stop and Shop
 Cola 2.99 Shoprite
 :
Operation done successfully

Databases in C++ 229

Building a database class structure

If you think about what classes you might need to use to connect

with a database, you probably would come up with

• Database

• Query

• Results

at the very least. For SQLite, our database class is pretty simple:

it does little more than wrap the sqldb object:

//The basic database object
//contains a pointer to the sqlite database
class sqltDatabase {
private:
 sqlite3* sqldb{ NULL };
 string dbname;

 bool exists(const std::string& name) {
 ifstream f(name.c_str());
 return f.good();
 }
public:
 int sqltDatabase::open(std::string fname) {
 /* Open database -- error if it doesn't exist */
 dbname = fname;
 rc = sqlite3_open_v2(dbname.c_str(), &sqldb,
 SQLITE_OPEN_READWRITE , NULL);
 return rc;
 }
 int sqltDatabase::create(std::string fname) {
 /* Open database or create it */
 dbname = fname;
 rc = sqlite3_open_v2(dbname.c_str(), &sqldb,
 SQLITE_OPEN_CREATE|
 SQLITE_OPEN_READWRITE, NULL);
 return rc;
 }
 //return the sqlite pointer
 sqlite3* getDb() {
 return sqldb;
 }

Databases in C++ 230

//close the database connection
 void close() {
 sqlite3_close(sqldb);
 }
};

If you use the original sqlite3_open function to open a database

file that doesn’t exist, it creates an empty file in that directory

having that name. This is while we use the sqlite3_open_v2

function instead.

The Query object

Most of the work in getting data from our database takes place in

executing the query. In SQLite, we additionally have to deal with

that callback structure we illustrated in the sqlitest example

above. Here, we wrap all of that in the query.

In addition, we have to decide what form the query results

should take. In this implementation, we decided to use a map for

each value returned. That way you can get the results out in any

order, regardless of the order you chose in the SQL itself.

So for thee query

Select foodname, price, storename.. .

We return each new row as a map. For example, this is the map

returned for the first result of that query:

{

 {“foodname”, “Apple”},

 {“price”, “0.27”},

 {“storename”, “Stop and Shop”}

}

To simplify use of these maps, we create an abbreviation where

we name that map as a dbMap.

//convenient abbreviation for the map
typedef map<string, string> dbMap;

Databases in C++ 231

The critical part of the Query class is the callback method, which

must be static for the callback from SQLite to work. It keeps

two static variables, once where each row’s map is created, and

one which is a vector of those successive maps.

class Query {
public:
 static dbMap stRow; //the map accrues here
 static vector <dbMap> stRows; //vector of maps

The callback function is called by SQLite for each row of the

query result. Each call contains arrays of names and values

which we put into a map entry. When all of the values in that row

have been added to the map, that map is added to a vector of

rows:

static int callback(void* data, int count,
 char** colVal, char** colName){
 Query::stRow.clear(); //clear the map variable
 for (int i = 0; i < count; i++) {
 string s1 = string(colName[i]); //name
 string s2 = string(colVal[i]); //value
 //insert into map
 Query::stRow.insert({ s1, s2 });
 }
 //add map to vector
 Query::stRows.push_back(Query::stRow);
 return 0;
}

The actual Query execute method makes the call to SQLite and

passes it the pointer to the static callback method.

// execute the query:
// the results are assembled
// in the static callback function
// as a vector of maps, one for each line of the results
// a pointer to a Results object is returned,
// containing that vector

Results* execute() {
 int rc = sqlite3_exec(sqdb, qstring.c_str(),
 Query::callback,

Databases in C++ 232

 nullptr, &errMsg);
 return new Results(stRows);
}

 When SQLite finishes with the callbacks, control is passed to

the return statement, which returns a Results object containing

that vector.

The Results class

The Results class copies that static vector from the Query class

into an instance variable and then provides a number of ways for

you to access that data. The most common ones are to get the

whole map row, or to get one column by value. Results also

increments the cursor each time, so yo always can get the next

row.

//copy from the Query static vector
 Results::Results(vector<dbMap> crows) {
 for (int i = 0; i < crows.size(); i++) {
 rows.push_back(crows[i]);
 }
 }
 //get one row as a map
 dbMap Results::getRow() {
 return rows[cursor++];
 }
 //get the value of the named column in the current row
 string Results::getVal(string name) {
 return rows[cursor++][name];

 }
 //get the size of the result
 size_t Results::getSize() {
 return rows.size();
 }

Using the SQLite classes

You can see now, that calling these classes is much easier than

using the original example code. Here is all it takes:

Databases in C++ 233

//program starts here
int main(int argc, char* argv[]) {
 //open the database
 sqltDatabase db("groceries.db");

 // create the query
 //note the continuation characters within a string
 Query qry(db,
 "Select foodname, price, storename from prices \
 join foods on (foods.foodkey = prices.foodkey) \
 join stores on (stores.storekey = prices.storekey) \
 order by foodname, price");

 //execute the query
 Results* res =qry.execute();

 //print out results of query
 for (int i = 0; i < res->getSize(); i++) {
 dbMap r = res->getRow();
 cout << r["foodname"] << ": " << r["price"]
 << ": " << r["storename"] << endl;
 }
 return 0;
}

Database Tables

We have shown you examples of database tables already in our

little grocery example. But so far, we haven’t shown how you

create a table. You can create a table in a single SQL command if

you want. For example, to create the Foods table, you create a

table with a key and a storename like this:

CREATE TABLE STORES
 (storekey INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT,
 storename VARCHAR(45) NOT NULL)

But, as you can see, this is a little fussy to get right. Let’s look

into building a Table class that will make tables for us. The

above example shows an integer key column and a variable

length character column with a maximum length of 45. The only

Databases in C++ 234

other common column would be the float column (double is not

available in most databases).

So before we consider making our table class, we might consider

making a basic Column class.

class Column {
protected:
 string colname; //the name
 bool primary{ false }; //and whether it's primary

public:
 Column(string name);
 bool isPrimary();
 string name();
 //derived classes fill this one in
 virtual string getSql()=0;
};

Note that this is an abstract class, since the getSql method is

virtual, and will differ in each derived class.

A simple example for integer columns is

IntCol::IntCol(string name) :Column(name) {}
 string IntCol::getSql() {
 return colname + " INT NOT NULL ";
}

Now, the primary key column is an integer as well, but you need

to mark it PRIMARY and usually AUTOINCREMENT as well.

Here is that column’s constructor and getSql method:

 PrimaryCol::PrimaryCol(string name, bool auto_inc)
:Column(name) {

 primary = true;
 autoinc = auto_inc;
 }

 string PrimaryCol::getSql() {
 string idname = colname +
 " INTEGER NOT NULL PRIMARY KEY ";
 if (autoinc) {
 idname += "AUTOINCREMENT ";

Databases in C++ 235

 }
 return idname;
 }

And, in the header file, we make sure that the auto_inc argument

defaults to true.

PrimaryCol(string name, bool auto_inc = true);

The only slightly different column is the CharCol which creates

a variable length text column, so you need to specify that size in

the constructor:

CharCol::CharCol(string name, int cwidth) :Column(name) {
 width = cwidth; //character string width
 }
 string CharCol::getSql() {
 string idname = colname + " VARCHAR(" +
 to_string(width) + ") NOT NULL ";
 return idname;
 }

Now, we can create the three tables quite easily. For example,

here is the Stores table:

 Table* stores = new Table("stores", db);
 stores->addColumn(new PrimaryCol("storekey"));
 stores->addColumn(new CharCol("storename", 45));
 stores->create();

The Foods table is exactly the same.

The Prices table is a bit longer since it has 4 columns. For

reasons we’ll discuss in a minute, we actually create a derived

PriceTable which creates the columns in its constructor:

addColumn(new PrimaryCol("pricekey"));
 addColumn(new IntCol("foodkey"));
 addColumn(new IntCol("storekey"));
 addColumn(new FloatCol("price"));
 create();

Databases in C++ 236

Adding rows to a Table

The SQL for inserting a row is pretty simple for small tables like

the Stores:

insert into stores (storename)values ("Stop and Shop")

Note that storename is a column name and not a string, but

“Stop and Shop” is a string. Again, this can get fussy, so for

these two simple tables: Stores and Foods, we can create a

simple addRow method: Note that we don’t have to specify the

primary key column at all. It automatically increments with each

additional row:

Our basic addRow method takes two strings, one with the

column name and one a quoted string for the value:

 stores->addRow("storename", "\"Stop and Shop\"");
 stores->addRow("storename", "\"Village Market\"");
 stores->addRow("storename", "\"Shoprite\"");

Note, however, that we have to use the \” escape sequence to put

a quote inside the quoted string. But for these simple tables, this

isn’t too bad. For the Foods table there are seven such addRow

calls for the seven foods.

But for the Prices table, it is a little more involved because you

need to insert two integers and a float:

insert into prices (storekey, foodkey, price) values
(1,1,0.55).

These are two integer keys and a floating point price value. We

need a away to represent a series of values which may be of

several types: string, int and float. One obvious way is using a

tuple. While you may be familiar with tuples where the values

are all the same type, you can use the make_tuple function to

create mixed tuples. For example

std::make_tuple(STOP, APPLES, 0.55)

Databases in C++ 237

returns a mixed tuple. But another way is to define a mixed tuple

type:

typedef std::tuple<int, int, float> pricetuple;

We could create a special Table method for adding such rows:

price->addRow(“storekey, foodkey, price”,
pricetuple(1,1,0.55));

But it would be easier to derive a PriceTable class which

contains this new version of the addRow method: The nice part

is that when you call this method, you don’t have to repeat the

column names in each call. The beginning of this method creates

the first part of the INSERT Sql.

int PriceTable::addRow(pricetuple ptuple) {
 string sql = "insert into " + tbName;
 sql += " (storekey, foodkey, price) ";
 sql += "values (" ;

Then in the next section we use C++’s tie function to unpack a

tuple into 3 variables, and complete the SQL string:

int fkey; int skey; float price;
 //unpack tuple into 3 variables
 std::tie(fkey, skey, price) = ptuple;
 sql += to_string(fkey) + ",";
 sql += to_string(skey) + ",";
 sql += to_string(price) ;
 sql += ")";

While, we actually know what the key values will be for the

stores and food table entries, we fetch them using a simple query

that we wrote into the Table class:

 const int STOP = stores->getKey("storekey",
"storename", "Stop and Shop");

 const int RITE = stores->getKey("storekey",
"storename", "Shoprite");

 const int VILLAGE = stores->getKey("storekey",
"storename", "Village Market");

and similarly for the foods.

Databases in C++ 238

Then loading the price table amounts to this relatively simple

code:

 prices->addRow(std::make_tuple(STOP, APPLES, 0.55));
 prices->addRow(pricetuple(STOP, BUTTER, 4.59));
 prices->addRow(pricetuple(STOP, COLA, 8.95));
 prices->addRow(pricetuple(STOP, BEANS, 3.49));
 prices->addRow(pricetuple(STOP, BURGER, 6.95));

and so forth.

Prepared Queries

Sometimes we have to run almost the same query several times,

where the only difference is one or two parameters in the

WHERE clause. Taking that same grocery query, suppose just

wanted a list of the prices of oranges in different stores. The

query would be

select foodname, price, storename from prices \
 join foods on (foods.foodkey = prices.foodkey) \
 join stores on (stores.storekey = prices.storekey) \
 where foodname = “Oranges” order by price;

But later, we might decide to run a query on prices of butter, too.

Clearly this is exactly the same query but with “Butter” replacing

“Oranges” in the last line. It would be nice if we could create a

generic query where you at the last minute decide which food to

ask about.

A prepared query does just that. In that query, the last line

becomes

where foodname = ? order by price

You create that query including one or more question marks

replacing variable parameters and let the database compile it into

internal byte codes. Then you simply tell the database what

values to use for those parameters and run the query.

Databases in C++ 239

Code for carrying this our is very simple at the top level and

looks much like previous code we’ve written.

 db.open("mygroc.db");
 string prepsql =
 "Select foodname, price, storename from prices \
 join foods on (foods.foodkey = prices.foodkey) \
 join stores on (stores.storekey = prices.storekey) \
 where foodname = ? order by price";

 //create the prepared query
 sqltPrepQuery pq(db, prepsql);
 pq.setVariable(1, "Oranges"); //set the variable 1
 Results* res = pq.execute(); //run the query

You could, of course, have more than one variable. You refer to

them by index, starting with one, in the order they are mentioned

in the query. For example,

where (foodname = ?) or (foodname = ?) order by foodname,
price";

where you then set two variables as 1 and 2.

You print out the results in much the same way as before.

 for (int i = 0; i < res->getSize(); i++) {
 dbMap dm = res->getRow();
 cout << dm["foodname"] << " " << dm["price"] << " "
 << dm["storename"] << endl;
 }
 pq.closeStatement(); //close and destroy the statement

The Sqlite3 prepared statement interface operates in four steps:

prepare the SQL statement (compile it), set variable values, step

through the result rows, and finalize (delete) the statement. You

also have the option to reset the prepared statement to the top of

it’s compiled code, so you can run it again without

recompilation.

Here is the SqltPrepQuery constructor which carries out the

preparation:

Databases in C++ 240

//create a prepared query-
//The "stmt" variable holds the pointer
//to the resulting prepared statement.
sqltPrepQuery::sqltPrepQuery(sqltDatabase db,
 string query): Query(db, query) {
 int rc = sqlite3_prepare_v2(db.getDb(),
 query.c_str(),
 (int)query.size(), &stmt, NULL);
 checkerr(rc);
}

Then there are set variable methods for all the common types.

The ones for int and double are quite simple:

//bind a double value to the query
void sqltPrepQuery::setVariable(int index, double value) {
 int rc = sqlite3_bind_double(stmt, index, value);
 checkerr(rc);
}
//bind an int value to the query
void sqltPrepQuery::setVariable(int index, int value) {
 int rc = sqlite3_bind_int(stmt, index, value);
 checkerr(rc);
}

The method for binding text variables is slightly more involved

because the string variable that holds that string cannot be local

to the method: it must be a class-level variable that has existence

outside that method. This is because the string might be deleted

before it is copied into Sqlite. It is also important that you set the

flag SQLITE_TRANSIENT, which tells the database that it should

make a copy of that text before it gets deleted

//bind a text value to the query
void sqltPrepQuery::setVariable(int index, string value) {

 //this MUST be a class level variable
 sval = value;
 const char* val1 = sval.c_str();
 size_t sz = strlen(val1);
 int rc = sqlite3_bind_text(stmt, index,
 val1, (int)sz, SQLITE_TRANSIENT);
 checkerr(rc);
}

Databases in C++ 241

You can then step though the rows, storing them in a vector of

maps just as we did for the conventional queries:

//execute the query
// and get back the column names and values
Results* sqltPrepQuery::execute() {
 stpRows = new vector<dbMap*>; //vector of rows
 while (sqlite3_step(stmt) != SQLITE_DONE){
 stpRow = new dbMap; //map for one row

 for (int col = 0; col <
 sqlite3_column_count(stmt); col++) {
 const char* name =
 sqlite3_column_name(stmt, col);

 const unsigned char* val =
 sqlite3_column_text(stmt, col);
 string s1 = string(name);
 string s2 = string((const char*)val);

 stpRow->insert({s1, s2}); //add to map
 }
 //add that map to the row vector
 stpRows->push_back(stpRow);
 }
 rewindStatement(); //you can comment this out
 return new Results(stpRows); //create Results
}

If this looks quite similar to the similar code for the Query

execute method we wrote above, it is. In fact, other than the fact

that it avoids that static variable callback kludge, it is the same

kind of code. The only difference is that you must finalize

(delete) that statement yourself when you are done. The main

difference is that we create the row map and the rows vector

using new and access them as pointers.

void sqltPrepQuery::closeStatement(){
 sqlite3_finalize(stmt);
}

In fact, you can use the sqltPrepQuery all the time, without

binding any variables to the query if there are none. You just

Databases in C++ 242

have to remember to finalize that statement so its memory is

released.

As far as the rewind method is concerned, we included a call to

it at the end of our query execute method. There is no real reason

not to do this, as it simply resets a single pointer to the top of the

compiled SQL code. But if you prefer, you can comment that

statement out and call it yourself.

Our code for it just calls the internal reset method:

void sqltPrepQuery::rewindStatement() {
 sqlite3_reset(stmt);
}

Summary

We have seen some general ways to build classes for accessing

databases. This strategy is called a Façade pattern and you can

use it and much of the code we wrote to access nearly any other

database, many more simply than what SQLite required.

Example programs on GitHub

1. Sqlitest – the simplest example for SQLite

2. Simple SQLite Database classes – all classes in one file

3. SQLite external classes – same as 2 but all classes and

headers in separate files

4. SQLite Tables – Creates the grocery database using

Table methods

5. SQLite Prepared – example code for prepared statements

References

1. SQLite Studio -- https://sqlitestudio.pl/

2. SQLite download -https://sqlite.org/download.html

3. When to use SQLite - https://sqlite.org/whentouse.html

4. The command line interface -- https://sqlite.org/cli.html

Using the MySql database 243

18. Using the MySql database

MySQL is an open source full-featured database system that has

all the power of other commercial databases. Unlike SQLite,

MySQL can handle any number of different database projects in

the same server environment. Each one is a completely separate

set of tables. This leads to some terminology confusion as to

what thing you refer to as a “database.”

MySQL solves this problem by referring to each individual

database as a “Schema.” But, of course, the SQL itself still refers

to opening each “database.” However, for internal consistency,

MySQL also allows you to open a “Schema.” Let’s just decide

that MySQL is a Database Manager package which contains any

number of databases.

While MySQL started out, it was an open source project, but it

was eventually sold to Sun Microsystems, which was then taken

over by Oracle. Oracle now supports MYSQL for free although

it offers a paid version as well. Some of the original MySQL

developers left the project, taking the MySQL code with them,

and forming the new open-source project MariaDB, which Is

also freely available.

Installing MySQL

For Windows, and most other platforms, you want to download

the MySQL installer1 and at the very least, install MySQL and

the C++ Connector code. The installer window is shown in

Figure 18-1.

Using the MySql database 244

Figure 18-1 - MySQL Installer

You also want to install the MySQL Workbench, which just like

the SQLite Studio, provides with a visual interface to inspect

databases and run queries.

If you install the server and connector to the default windows

directories, you will find the Connector C++ code installed under

c:\Program Files\MySQL\Connector C++ 8.0\. The Connector

C++ 8.0 library is a set of C++ classes you can use to connect to

MySQL. They are at a considerably higher level than those in

SQLite and at a lower level than the Python interface to MySQL

we discussed previously.5

Writing C++ to connect to MySQL

All of the classes you need to connect to MySQL are in the

mysqlx namespace, and are pretty straightforward to use. There

are some examples in XDevAPI manual.6 But we’ll show you

how in this discussion.

Using the MySql database 245

In Visual Studio, you need to create a Console C++ project, and

add the following to the Release Configuration Property Pages.

Connector C++ 8.0 requires C++ version 11, but will work OK

with C++ version 14, with only minor warning messages.

However, your code will not compile correctly with more recent

C++ versions. This is a real shame as it takes away the

advantages of the last 10 years of C++ improvements.

• Be sure that the C++ language standard is set to C++ 14.

• Set VC++ External Includes to

c:\Program Files\MySQL\Connector C++ 8.0\include

• and set the VC++ library directories to

C:\Program Files\MySQL\Connector C++ 8.0\lib64

• You also need to add this path under

Linker/General/Additional Library directories. And

finally you need to add a PATH statement under

Configuration Properties/Debugging. It should be of the

form

PATH=C:\Program Files\MySQL\Connector C++ 8.0\lib64;%PATH%

• And finally, under Linker/Input edit the entry to start

with

mysqlcppcon8.lib

• It is also important that that lib file be in the same folder

as the DLL files. You should copy it there from the vs14

directory just below the lib64 directory.

Now we can write a little C++ program to connect to MySQL.

First, you must log in to the database using port 33060.

Our program must start by including the header files for the

Connector code, as well as the namespace mysqlx.

Using the MySql database 246

#include <iostream>
#include <string>
#include <mysqlx/xdevapi.h>

using std::cout;
using std::endl;
using namespace::mysqlx;

Note that to connect to the older interface in Python we used for

3306. For Connector C++ we use port 33060.

try {
 std::string user = "newuser";
 std::string password = "new_user";
 std::string host = "localhost";
 unsigned int port = 33060;

 // Create a session to connect to the MySQL Server
 mysqlx::Session session(host, port,
 user, password)

Then, we select a database using the SQL statement USE. We’ll

assume the groceries database is already there, but you can use

any database you want. By the end of this chapter, we’ll have

written much the same code as in the last chapter to create that

groceries database. In any case we select the database here:

// Tell MySQL which database to use
 session.sql("USE groceries").execute();

Next we write a little query:

// Perform any operations on the table or query data
string sql = "Select distinct foodname, price, storename
from prices \
 join foods on(foods.foodkey = prices.foodkey) \
 join stores on(stores.storekey = prices.storekey)";

and then we execute it:

//execute a query and print out the result
SqlResult res = session.sql(sql).execute(); //query result

Using the MySql database 247

And finally, we get the column names array:

//array of columns
const Columns& columns = res.getColumns();

and run through the rows, printing out the column values:

Row row;
while ((row = res.fetchOne())) { //get each row
 //get each column
 for (unsigned index = 0;
 index < res.getColumnCount();
 index++)
 {
 //print out the column name and content
 cout << columns[index].getColumnName() <<
 ": " << row[index] << endl;
 }
 }

Finally, we close the session and catch any exceptions:

// Close the session
 session.close();
 }
 catch (const mysqlx::Error& error) {
 std::cerr << "Error: " << error << std::endl;
 return 1;
 }

Note that you must enclose all of your access to MySQL in a try-

catch exception which will print out an error message if

something fails, and that you must close the session. The output

is much as before:

foodname: Apples
price: 0.27
storename: Stop and Shop
foodname: Oranges
price: 0.36
storename: Stop and Shop

Using the MySql database 248

foodname: Hamburger
price: 1.98
storename: Stop and Shop
foodname: Butter
price: 2.39

and so forth.

Debugging libraries for Connector C++

You can also download the debugging libraries so you can run

your code in Debug mode. Go to this page4 , scroll down and

download the Windows 64-bit Zip archive Debug Libraries. You

only need the DLLs, so unzip this archive and copy the debug

folder under the lib64 folder.

• Copy that debug folder under the lib64 folder of your

Connector C++ installation.

• Create Visual Studio Console C++ project and under

project Project / Properties set all the Release 64

properties as above.

• Then switch the Properties drop-down to Debug 64 and

set VC++ Library Directory to

C:\Program Files\MySQL\Connector C++ 8.0\lib64\debug

• Set the Linker /General/ Additional Library Directories

to the same thing.

• Set the Configuration Properties/Debugging

/Environment to start with

PATH=C:\Program Files\MySQL\
 Connector C++ 8.0\lib64\debug;%PATH%

• Copy the mysqlcppcon8.lib file into that same

…\lib64\debug folder.

Creating C++ classes to connect to MySQL

Now we are going to create versions of the same classes we used

in the SQLite chapter. As we noted there, this is effectively a

Using the MySql database 249

Façade pattern, where we wrap the code to communicate with

MySQL in simpler class structure. And since we are already

dealing with a class based interface in Connector C++, this is

very easy indeed.

We’ll work from an abstract Database class which is the base

class we used in the SQLite code as well.

#include "globaldefs.h"
class Database {
public:
 virtual int open(std::string filename) = 0;
 virtual int create(std::string filename,
 bool del) = 0;
 virtual string getName() =0;
 virtual vector<string> getTableNames() =0;
 //close the database connection
 virtual void close() = 0;
};

Then to communicate with MySQL we need only fill in these

simple methods in a derived msqDatabase class. Our class

constructor opens a database session with the hostname,

username, password and port:

// Create a session to connect to the MySQL Server
msqDatabase::msqDatabase(string host, int port,

string user, string password) {
 session = new Session(host, port, user, password);
}

//get a pointer to the current session
mysqlx::Session* msqDatabase::getSession() {
 return session;
}

In a similar fashion, we can select a database (or schema) by

running a simple SQL query using the session.sql.execute

method. Here’s how we open a database:

Using the MySql database 250

// Create a session to connect to the MySQL Server
msqDatabase::msqDatabase(string host, int port,
 string user, string password) {
 session = new Session(host, port, user, password);
}

//get a pointer to the current session
mysqlx::Session* msqDatabase::getSession() {
 return session;
}

And, creating a database is just about as simple:

//create new database, delete prior vsn if del is true
int msqDatabase::create(string name, bool del) {
 dbName = name;
 if (del) {
 session->sql("DROP DATABASE IF EXISTS "+
 dbName).execute();
 }
 session->sql("create database " + dbName).execute();
 setSchema();
 return 0;
}

We also include two methods you can use to run SQL

commands: one that returns results and one that doesn’t.

//runs any sql that does not produce a Result
void msqDatabase::runSql(string sqltext) {
 session->sql(sqltext).execute();
}

//run any sql that returns an SqlResult
mysqlx::SqlResult msqDatabase::runQuery(string sqltext) {
 return session->sql(sqltext).execute();
}

In theory, the above is all you need to execute all queries in

MySQL, but returning the query results in convenient maps is a

worthwhile addition, and we will see that this takes very little

Using the MySql database 251

new code. There are only slight modifications to the Query class

code and essentially none to the Results class code.

Numeric types in MySQL

MySQL has a greater range of numeric types compare to SQLite.

They are shown in Table 18-1 and Table 18-2.

Name Bytes

TINYINT 1

SMALLINT 2

MEDIUMINT 3

INT 4

BIGINT 8
Table 18-1 - Integer types

Name Bytes

FLOAT 4

DOUBLE 8
Table 18-2 - Floating point types

MySQL also supports the DECIMAL type, for use with currency,

where exact values are required.

MySQL Query results

Unlike SQLite, MySQL returns numeric values rather than

strings in query results. The return value is an mysqlx::Value

object which contains a data type and a data value. The types

Value contains are shown in Table 18-3.

VNULL null

UINT64 Unsigned integer

INT64 Signed integer

FLOAT 32 bit float

DOUBLE 64 bit double

BOOL Boolean

DOCUMENT Document

STRING String

RAW Raw bytes

Using the MySql database 252

ARRAY Array of values
Table 18-3 - Types of data in Value object

So, the query results are mapped to a new dbMap which contains

that Value object:

typedef map<string, mysqlx::Value> dbMap;

The actual Query code that constructs that map is quite similar to

that we wrote for SQLite:

//execute the query and get back the col names and values
Results* Query::execute() {
 stpRows = new vector<dbMap*>; //vector of rows
 //run the query
 mysqlx::SqlResult res = db->runQuery(sql);
 //get the columns
 const mysqlx::Columns& columns = res.getColumns();
 mysqlx::Row row;
 while ((row = res.fetchOne())) {
 //create a map for this row
 dbMap* stpRow = new dbMap;
 for (unsigned index = 0;
 index < res.getColumnCount();
 index++)
 {string s1 =
 columns[index].getColumnName();
 //add to current map

 stpRow->insert({ s1, row[index]});
 }
 //add complete row to vector
 stpRows->push_back(stpRow);
 }
 //return Results object
 return new Results(stpRows);
}

Why does printing out a Value object work?
The printing of the results from a query amounts to

cout << dm["foodname"] << " " << dm["price"] << " "
 << dm["storename"] << endl;

Using the MySql database 253

If dm[“price”] is a Value object instead of a number or string,

why does this cout call work? It works because the Value object

overloads the << operator, and decides internally what data is to

be sent to cout to be printed. If you want to get the value of one

of these fields as a string, to put in a visual table, you have a

couple of options.

One way is to “print” the contents of the Value object to a

stringstream instead of to the console stream:

mysqlx::Value v = dm1["price"];
stringstream ss; //create a stringstream
ss << v; //print the value to the stream
string outs = ss.str(); //convert to a string

Another simple way would be to check the type of the Value and

then convert it to a string yourself using ifs or a switch

statement:

string sval = ""; //answer goes here
 int itype = r.getType(); //get the type
 if (itype == r.FLOAT) { //if float
 float val = float(r); //cast it
 sval = std::to_string(val); //convert it
 }
 else if (itype == r.INT64) {
 int val = int(r); //here it's an integer
 sval = std::to_string(val);
 }
 else if (itype == r.STRING) {
 string val = string(r);
 //if a string already do nothing
 sval = val;
 }

Creating the MySQL groceries database

Everything else is much the same as in SQLite. You can create

and load the tables in just the same way. Here is a bit of the code:

try {
 std::string user = "newuser";
 std::string password = "new_user";

Using the MySql database 254

 std::string host = "localhost";
 unsigned int port = 33060;

 // Create a session to connect to the MySQL Server
 msqDatabase* db =
 new msqDatabase(host, port, user, password);
 db->create("mygroceries");

 //make the food table
 msqTable* foodTable = new msqTable("foods", db);
 foodTable->addColumn(
 new PrimaryCol("foodkey", true));
 foodTable->addColumn(new CharCol("foodname", 45));
 foodTable->create();

Prepared Queries in MySQL

You can carry out prepared queries using the C++ Connector 8.0

as well, although they differ slightly from those provided in

SQLite. As in the prior case, you create a compiled SQL

statement by leaving off the trailing .execute() method.

mysqlx::SqlStatement sqQuery= session->sql(sqltext);

So, that sqQuery object can have variable bound to it. However,

if you look at the Connector C++ documentation, this object is

not defined. It is only mentioned as the output of the sql method.

For whatever reason, that SqlStatement object is not a first calss

object. For example, it has no default constructor, so you cannot

write a class containing a SqlStatement variable. Writing code

such as

mysqlx:SqlStatement sqQuery; //define a sqQuery instance
variable

will be flagged by the compiler as an error, because it cannot

create an object with no default constructor. There is a simple

way around this, however. Let’s create a method in our

msqDatabase class:

//return an SqlStatement object

Using the MySql database 255

 mysqlx::SqlStatement
 msqDatabase::getSqlStatement(string sqlp) {
 return session->sql(sqlp);
}

We can call this method from our main routine where you can

create an use such an obkect:

mysqlx::SqlStatement sqQuery = db->getSqlStatement(sqlp);

Then we can pass a pointer to this object into our new

PreparedQuery class as by simply writing

msqPrearedQuery* prep =

 new msqPreparedQuery(db, &sqQuery);

Finally, we can bind variables to that prepared statement.

Let’s write the full example now. Our prepared query has two

variables to be filled in, one for a price and one for a name. We

set then using the same sort of setVariable method we used in

SQLite, but note that there is no variable number. They are

applied in the order they appear in the query.

//using prepared query
 string sqlp =
"Select distinct foodname, price, storename from prices \
 join foods on(foods.foodkey = prices.foodkey) \
 join stores on(stores.storekey = prices.storekey) \
 where price > ? and storename like ?";

// create the statement
 mysqlx::SqlStatement sqQuery =
 db->getSqlStatement(sqlp);
 msqPreparedQuery* prep =
 new msqPreparedQuery(db, &sqQuery);

 //and bind the values to the variables
 prep->setVariable(2.0);
 prep->setVariable("S%");
 Results* res1 = prep->execute();

Using the MySql database 256

The code in the PreparedQuery class is very much the same as in

the SQLite version, except that the setVariable methods do not

include an index value: they are taken in order.

msqPreparedQuery::msqPreparedQuery(msqDatabase* pdb,
mysqlx::SqlStatement* psQuery):Query(pdb, "") {
 sqQuery = psQuery;
 db = pdb;
}

//bind a text value to the query
void msqPreparedQuery::setVariable(string value) {
 sqQuery->bind(value);
}
//bind a double value to the query
void msqPreparedQuery::setVariable(double value) {
 sqQuery->bind(value);
}

And, finally the execute() method is very much like the one in

our Query class, except that we run the query that we have just

bound the values to. It starts out:

//execute the query
//and get back the column names and values
Results* msqPreparedQuery::execute() {
 stpRows = new vector<dbMap*>; //vector of rows
 //run the bound query
 mysqlx::SqlResult res = sqQuery->execute();

Table functions in Connector C++

Connector C++ provides a convenient syntax for adding rows to

a table. For our foods table, you could add a new food like this:

Schema schema = session.getSchema("mygroceries");
session.sql("USE groceries").execute();

Table table = schema.getTable("foods");
table.insert("foodname").values("Pineapple").execute();

Using the MySql database 257

Note that you can add strings to a VARCHAR without including

those annoying extra escaped quotes. You can also add mixed

types without any special syntax:

Table tb2 = schema.getTable("prices");
tb2.insert("storekey", "foodkey", "price")
 .values(3, 8, 3.75).execute();

Other approaches to prepared queries

In addition to relational tables, MySQL supports Collections.

Collections contain documents in JSON format, but are stored in

a more efficient binary format

According to the MySQL documentation, MySQL caches and

remembers the last query and keeps it in compiled form unless

you issue a new one. While this feature is described in the

documentation for use with Collections, it also works with

relational tables as we illustrate below.

This SQl fragment represents a query with a couple of variable

values in it just as we used above:

where price > ? and storename like ? ";

Then you can bind two values to these variables in a single

statement:

SqlResult res = session.sql(sql).
 bind(1.0).bind("S%").execute();

and after storing that result, you can simply bind new values to

the same SQL, and they will be bound to that already compiled

version of the query:

res = session.sql(sql).bind(0.5).bind("V%").execute();

If you insert some timing code around these two queries, would

will find that the second one runs faster.

 clock_t start, end; //two clock objects
 double cputime; //time goes here

Using the MySql database 258

 cout << std::fixed; //fixed precision output
 start = clock(); //start the clock
 SqlResult res = session.sql(sql).bind(1.0).
 bind("S%").execute();
 end = clock(); //end the clock
 cputime = ((double)end - start) ; //save the time
 cout << std::setprecision(9) << cputime << endl;

While this can be useful it is difficult to use this feature in

classes as we have done previously, but it may be useful to you

in other contexts.

Example programs on GitHub

1. MySQL test app – Opens the database and runs a simple

query.

2. MySQL db tables – Using a complete C++ set of classes,

it creates the complete groceries database and runs a

query on it.

3. MySQL Prepared query – Carries out Prepared queries

on the groceries database.

4. MySQL table rows – Uses new syntax to add rows to

table.

5. Timing prepared – times prepared statements

Summary

In these two database chapters, we’ve covered a local database

and a server database, and developed a Façade that allows you to

use the same code in both systems. We’ve made some powerful

use of the map object to return query results and tuples to create

ways to add data to tables.

References

1. MySQL installer:

https://dev.mysql.com/downloads/installer/

https://dev.mysql.com/downloads/installer/

Using the MySql database 259

2. MySQL Workbench:

https://dev.mysql.com/downloads/workbench/

3. MySQL Connector C++:

https://dev.mysql.com/downloads/connector/cpp/

4. MySQL Debug Binaries:

https://dev.mysql.com/downloads/connector/cpp/

5. Cooper, James W. Python Programming with Design

Patterns, Pearson Education: New York:2022.

6. Working with XDevAPI: https://dev.mysql.com/doc/x-

devapi-userguide/en/devapi-users-introduction.html

7. The mysqlx::SqlStatement,:

https://dev.mysql.com/doc/dev/connector-

python/8.0/mysqlx.SqlStatement.html

8. Working with Prepared Statements:

https://dev.mysql.com/doc/x-devapi-

userguide/en/working-with-prepared-statements.html

https://dev.mysql.com/downloads/workbench/
https://dev.mysql.com/downloads/connector/cpp/
https://dev.mysql.com/downloads/connector/cpp/
https://dev.mysql.com/doc/dev/connector-python/8.0/mysqlx.SqlStatement.html
https://dev.mysql.com/doc/dev/connector-python/8.0/mysqlx.SqlStatement.html

Using the MySql database 260

Namespaces and Modules 261

19. Namespaces and Modules

Namespaces are a unique part of C++ that allow you to have

similar class and function names in each namespace. The closest

thing to these in Python are folders which can each contain

similarly named classes and methods.

 But as we have seen, most libraries have their own namespaces.

The largest, of course, is the std namespace, which has many

thousands of entries. But most of the libraries we have dealt

with, such as wxWidgets and armadillo also have their own

namespaces that you access with the using directive. As your

projects get larger, you begin to see the advantages of dividing

your code into different namespaces, and in C++ this is very easy

indeed.

Let’s create a little math routine namespace, and call it

minimath. It might have a simple square function such as:

double square(const double x) {
 return x * x;
}

To put it in its own namespace, you simply surround the

functions with a namespace declaration enclosed in braces:

namespace minimath {
 double square(const double x) {
 return x * x;
 }
}

Then, you can refer to it in your main program with the using

directive:

using minimath::square;

int main() {
 double y = 123.45;
 double z = square(y);
 cout << "x^2 =" << z << endl;

Namespaces and Modules 262

}

But, this will only compile and run if you tell your main program

that that namespace exists somewhere, by using an include file

as usual. Here is the file minimath.h:

namespace minimath {
 double square(const double x);
}

which just declares that the square function exists in the

minimath namespace. So your complete main program needs to

refer to that include file and any others you use as usual.

#include <iostream>
#include "minimath.h"

using std::cout;
using std::endl;

using minimath::square;

int main() {
 double y = 123.45;
 double z = square(y);
 cout << "x^2 =" << z << endl;
}

Of course, your math library might contain more than one

function, and they can be in the same or separate files. Here’s a

separate file for a cube function:

namespace minimath {
 double cube(const double x) {
 return x * x * x;
 }
}

You can use the same include file for both members of the same

name space: it just has one more entry:

namespace minimath {
 double square(const double x);

Namespaces and Modules 263

 double cube(const double x);
}

With that one change, our main program can then be:

using minimath::square;
using minimath::cube;

int main() {
 double y = 123.45;
 double z = square(y);
 cout << "x^2 =" << z << endl;
 cout << "x cubed is : " << cube(y) << endl;
}

And that is really about all there is to using namespaces.

Modules

Modules are groups of classes and functions that are compiled

separately and then imported into your program. This makes

compiling your own program much faster. The whole idea of

modules is hardly new, but they didn’t really come into their own

until C++ 20, and as this is written in 2023, very few compilers

besides Microsoft Visual Studio support them very well.

Modules have a lot of advantages besides speeding up

compilation. They do away with the need for a lot of confusing

include files where the order of those includes can be critical to

your success. In fact, you can compile the whole std library into

a module and do away with a lot of those includes [3].

Let’s start with a really simple module containing those two

math functions we wrote above. To create a module, you start

with the module declaration, and follow with the code for that

moduel. We’ll call this module Minimath (note the capital letter

for this one to distinguish it from the namespace we just

discussed). Our simple module could then be

module Minimath;

double square(const double x) {

Namespaces and Modules 264

 return x * x;
}

And, of course you can have several files containing additional

functions (or classes) by simply preceding them with that same

module declaration. Here is the cube function:

module Minimath;

double cube(const double x) {
 return x * x * x;
}

The module descriptor file

To make a Visual Studio project that contains modules, you must

create a module definition file. In Visual Studio, these have an

.ixx extension. Thus far, this extension is not standardized by

other compilers, but the contents are. To create this definition file

select Project/Add module… This brings up a window where

you can create that file as shown in Figure 19-1. Be sure to type

in the name of the module in the Name field at the bottom.

Figure 19-1 - Creating module definition file

Namespaces and Modules 265

This will create a file Minimath.ixx with the following

temporary contents:

export module Minimath;
export void MyFunc();

Change the file to contain the actual function names:

//module descriptor file
export module Minimath;
 export double square(const double x);
 export double cube(const double x);

Then, create the main calling program that imports that module:

#include <iostream>
using std::cout;
using std::endl;

import Minimath; //import the Minimath module

int main() {
 double x = 12;
 cout << "x^2 =" << square(x) << endl;
 cout << "x cubed is" << cube(x) << endl;
}

Make the descriptor file an include file

Before you can compile and run this simple example, you have

to make one more change. You must make the module descriptor

file an include file. To do this, right-click on the Headers line in

the Solution Explorer window, and select Add… and then

Existing item, and select the Minimath.ixx file. Once you have

done that, the program should compile and run.

Combining namespaces and modules

Of course, if you are making actual, useful modules, you

probably would put them in their own namespace.

Namespaces and Modules 266

In that case, the namespace declaration goes under the module

declaration like this:

module Minimath;
namespace minimath {
 double square(const double x) {
 return x * x;
 }
}

and here:

module Minimath;
namespace minimath {
 double cube(const double x) {
 return x * x * x;
 }
}

The module descriptor file contains both:

export module Minimath;
namespace minimath {
 export double square(const double x);
 export double cube(const double x);
}

And the main calling program needs both the import and the

using declarations:

import Minimath;
using minimath::square;
using minimath::cube;

int main() {
 double y = 123.45;
 double z = square(y);
 cout << "x^2 =" << z << endl;
 cout << "x cubed is : " << cube(y) << endl;
}

Namespaces and Modules 267

Example code on GitHub

1. Tinynamespace –namespace example

2. Our module – Minimath module example

3. Tinymodule – combines namespace and module code

References

1. Microsoft examples of namespaces.

https://learn.microsoft.com/en-us/cpp/cpp/namespaces-

cpp?view=msvc-170

2. Microsoft explanation of modules:

https://learn.microsoft.com/en-us/cpp/cpp/tutorial-

named-modules-cpp?view=msvc-170

3. Making the whole standard library into a module:

https://learn.microsoft.com/en-us/cpp/cpp/tutorial-

import-stl-named-module?view=msvc-170

https://learn.microsoft.com/en-us/cpp/cpp/tutorial-import-stl-named-module?view=msvc-170
https://learn.microsoft.com/en-us/cpp/cpp/tutorial-import-stl-named-module?view=msvc-170

Namespaces and Modules 268

Namespaces and Modules 269

Part III -Design Patterns

Design patterns are a set of algorithms that computer scientists

discovered when studying well-written computer code. They are

not “written” so much as “curated” from examples of good

object-oriented coding practices. In other words

Design patterns are frequently used algorithms that describe

convenient ways for classes to communicate.

Design patterns began to be recognized more formally in the

early 1990s by Erich Gamma1 , who described patterns

incorporated in the GUI application framework, ET++. The

culmination of these discussions and a number of technical

meetings was the publication of Design Patterns -- Elements of

Reusable Software, by Gamma, Helm, Johnson and Vlissides.2

This book, commonly referred to as the Gang of Four or “GoF”

book, has had a powerful impact on those seeking to understand

how to use design patterns and has become an all-time best

seller. It describes 23 commonly occurring and generally useful

patterns and comments on how and when you might apply them.

We will refer to this groundbreaking book as Design Patterns,

throughout this book.

Since the publication of the original Design Patterns text, there

have been a number of other useful books published. These

include our popular Python Programming with Design Patterns,3

and an analogous book on Java Design Patterns.4

Notes on Object Oriented Approaches

The fundamental reason for using design patterns is to keep

classes separated and prevent them from having to know too

much about one another. Equally important, using these patterns

helps you avoid reinventing the wheel and allows you to describe

your programming approach succinctly in terms other

programmers can easily understand.

Namespaces and Modules 270

There are a number of strategies that OO programmers use to

achieve this separation, among them encapsulation and

inheritance. Nearly all languages that have OO capabilities

support inheritance. A class that inherits from a parent class has

access to all of the methods of that parent class. It also has access

to all of its variables. However, by starting your inheritance

hierarchy with a complete, working class you may be unduly

restricting yourself as well as carrying along specific method

implementation baggage. Instead, Design Patterns suggests that

you always

Program to an interface and not to an implementation.

Putting this more succinctly, you should define the top of any

class hierarchy with an abstract class or an interface, which

implement no methods, but simply define the methods that class

will support. Then, in all of your derived classes you have more

freedom to implement these methods as most suit your purposes.

The other major concept you should recognize is that of object

composition. We have already seen this approach in our Statelist

examples. This is simply the construction of objects that contain

others: encapsulation of several objects inside another one.

While many beginning OO programmers use inheritance to solve

every problem, as you begin to write more elaborate programs,

the merits of object composition become apparent. Your new

object can have the interface that is best for what you want to

accomplish without having all the methods of the parent classes.

Thus, the second major precept suggested by Design Patterns is

Favor object composition over inheritance.

At first this seems contrary to the customs of OO programming,

but you will see any number of cases among the design patterns

where we find that inclusion of one or more objects inside

another is the preferred method.

Namespaces and Modules 271

Commonly used Patterns

We’ve already seen how to use the Command Pattern and the

Mediator Pattern in building our first user interfaces in Chapter

13. And we learned about the Façade Pattern when we wrote

interfaces to two databases in Chapter 17 and 18. In the chapters

that follow, we’ll look at Factory Patterns, Adapter patterns and

Bridge patterns, which are some of the most commonly used

patterns beside the Command and Mediator patterns.

References

1. Erich Gamma, Object-Oriented Software Development
based on ET++. (in German) Spring-Verlag, Berlin,

1992.

2. Erich Gamma, Richard Helm, Ralph Johnson and John

Vlissides, Design Patterns, Elements of Reusable

Object-Oriented Software, Addison-Wesley, Reading,

MA: 1995.

3. James Cooper, Python Programming with Design

Patterns, Pearson Education, 2022.

4. James Cooper, Java Design Patterns: A Tutorial,

Addison-Wesley: Boston: 2000

Namespaces and Modules 272

Factory Patterns 273

20. Factory Patterns

Some of the simplest of the Design Patterns are the Factory

Patterns: programs where the code itself decides which of

several related classes to use. Note that the user does not make

these decisions, the Factory itself decides which class to

instatntiate.

The Simple Factory Pattern

We’ll start with the Simple Factory Pattern, which we use in an

elementary program to decide whether a name is entered

• lastname, firstname or

• firstname lastname

We’ll start by creating a base Namer class that holds the first

name and the last name, and provides accessor methods for

fetching them:

//base namer class
class Namer {
protected:
 string frname{ NULL }; //first name
 string lname{ NULL }; //last name

public:
 string getFrname() {
 return frname; //get the first name
 }
 string getLname() {
 return lname; //get the last name
 }
};

Then, we can create two derived classes, one for first-last and

one for last-first. The underlying assumption in this simple

program is that first-last name entries are separated by a space,

and last-first separated by a comma. Both of these classes are

Factory Patterns 274

derived from Namer and store their data in frname and lname

inside that base class.

So, the FirstLast class just looks for the space and cuts the string

into two pieces on either side of that space.

//splits apart two names separated by a space
class FirstFirst : public Namer {
public:
 FirstFirst(string nameEntry) {

//find the space
 int index = nameEntry.find(" ");
 if (index > 0) {

 //if we find one split there
 frname = nameEntry.substr(0, index);
 lname = nameEntry.substr(index+1,

size(nameEntry) - index);
 }
 }
};

And, similarly, the LastFirst splits at the comma,

//splits apart names separated by a comma
class LastFirst : public Namer {
public:
 LastFirst(string nameEntry) {
 int index = nameEntry.find(",");
 if (index > 0) {
 lname = nameEntry.substr(0, index);

//prevents error if no 2nd name
 if (index+2 < size(nameEntry))
 frname = nameEntry.substr(index+2,

 size(nameEntry) - (index+2));
 }
 }
};

The Factory itself simply looks for that comma and returns a

pointer to an instance of LastFirst. Otherwise, it returns a pointer

to an instance of FirstFirst.

Factory Patterns 275

//The name factory returns a pointer
// to a last-first namer
// or a first-first namer
class NameFactory {
private:
 string nameString;
public:

 NameFactory(string nm) {
 nameString = nm; //save the string
 }
 //get the right child of the Namer class
 Namer* getNamer() {
 //if there is a comma
 int index = nameString.find(",");
 if (index > 0) {
 return new LastFirst(nameString);

 //return a LastFirst instance
 }
 //otherwise, return a FirstLast instance
 else {
 return new FirstFirst(nameString);
 }
 }
};

The calling program then reads in a line from the console and

uses the NameFactory to decide which Namer class to use:

//Program to take in names with spaces or commas
//and determine which is last name and which is first
int main() {
 bool quit = false; //quit if it becomes true
 char name[100]; //buffer where the line is read
 while (!quit) { //repeat until "quit" entered
 //get the name chars from the keyboard
 cout << "Enter name: ";
 cin.getline(name, 100);
 string nm(name); //convert to a string
 if (nm == "quit") {
 quit = true; //set flag for "quit"
 }
 else {

Factory Patterns 276

 NameFactory nf(nm); //create a name factory

 //get the right namer pointer

 Namer* nmr = nf.getNamer();
 //print out the first and last names

 cout << format("First: {} Last: {} \n",
 nmr->getFrname(), nmr->getLname());
 delete nmr; //delete pointer to class
 }
 }
}

We can run the above code just as you see it here, or you can

wrap it in a simple user interface based on our original Add two

numbers example. The result is shown in Figure 20-20-1.

Figure 20-20-1 - The visual Namer demo

The Factory Method Pattern

The Factory Method Pattern is similar to the Factory Pattern,

except that the decision as to which computation class to use is

made by a derived class, and each derived class may choose a

Factory Patterns 277

different computation class. This is actually simpler than it

sounds.

In both swimming and track and field races, the order in which

athletes compete is determined not only by their entry time, but

by whether the race will be run only once or as preliminaries and

finals. In the first case, called Timed Finals, the athletes are

arranged in heats so that the final heat contains the fastest

athletes by their entry (or seed) time. In swimming, when the

race is run as prelims and finals, the athletes are mixed together

so that the fastest athletes are in one of the top 3 heats, giving

more swimmers a chance to compete against the very fastest

swimmers. Track and field races have a different, but analogous

system.

We start by creating a Swimmer class, which holds the data for

one swimmer’s name, age and club and seed time. It also parses

one line of the input files 100free.txt or 500free.txt.

class Swimmer {
private:
 string frname; //first name
 string lname; //last name
 int age; //age
 string club; //club symbol
 string seedtime; //time with colon in string
form
 float time = 0.0; //time as float for sorting
 int _lane = 0; //private lane value
 int _heat = 0; //prinvate heat value

public:
 //remove colon to make float
 string removeColon();
 Swimmer(string dataline);
 Swimmer();
 string getName(); //Swimmer name
 string getClub(); //Swimmer club
 int getAge(); //swimmer age
 float getTime(); //get the value of seed time
 string getSeed(); //get the seed time string

Factory Patterns 278

 int heat(); //get the heat number
 void heat(int h); //set the heat number
 int lane(); //get the lane number
 void lane(int ln); //set the lane number
};

While the Swimmer class could be represented in any language,

including Python, a C++ representation keeps the internal data

private and uses getter methods to fetch the name, age, club and

seed time. But since a program to place swimmers in heats and

lanes require both read and write access to the heat and lane

variables, we could make the public as we would do in Python.

Or we could take advantage of polymorphism and create two

versions of the heat and lane methods: one for fetching values

and one for storing values as shown in the above header file. The

actual code for those methods fetches and store values in the

private variable which we name _heat and _lane so that we can

use the original names in the access methods:

int Swimmer::heat() {
 return _heat; //get the heat number
}
void Swimmer::heat(int h) {
 _heat = h; //store the heat number
}
int Swimmer::lane() {
 return _lane; //get the lane number
}
void Swimmer::lane(int ln) {
 _lane = ln; //store the lane number
}

In C++ you can have several methods with the same name as

long as the arguments are different. So, we can write

int mylane = sw->lane();
//or
sw->lane(mylane);

Factory Patterns 279

This makes the code less cluttered and easier to read. Note that

this approach would not work in Python where this sort of

polymorphism is not supported.

In our seeding factory method program, we then create an

abstract Event class, which contains an array of swimmers and

returns the seeding method it uses:

class Event {
protected:
 int numLanes;
 vector <Swimmer*> swimmers;
public:
 Event(string filename, int lanes);
 Event();
 virtual Seeding* getSeeding() = 0;
};

We derive from that bas a TimedFinalEvent and a PrelimEvent.

We also create a base class Seeding, from which we derive

StraightSeeding and CircleSeeding. StraightSeeding places the

fastest swimmers in the first heat, the next fastest in the next heat

and so forth. Circle Seeding places the fastest 3 swimmers in the

middle lane of the first 3 heats and the next 3 fastest in the

adjacent lane and so forth.

So, if we choose a TimedFinalEvent

TimedFinalEvent::TimedFinalEvent(string filename, int
lanes)
 : Event(filename, lanes){
 }

 Seeding* TimedFinalEvent::getSeeding() {
 return new StraightSeeding(swimmers, numLanes);
 }

It chooses StraightSeeding and if we pick a PrelimEvent it

chooses CircleSeeding.

Factory Patterns 280

PrelimEvent::PrelimEvent(string filename, int lanes)

:Event(filename, lanes) {}

 Seeding* PrelimEvent::getSeeding() {
 return new CircleSeeding(swimmers, numLanes);
 }

Thus, the class itself decides which seeding to use, and this is the

way the Factory Method Pattern works. To illustrate with the

console version, we can either enter 1 or 5 for 100 Free or 500

Free. For younger swimmers, the 500 free is generally swum as a

Timed Final event, so the result is shown here:

enter '1' or '5' (0 to quit): 5
 13 3 Emily Fenn 17 WRAT 459.54
 13 4 Kathryn Miller 16 WYW 501.35
 13 2 Melissa Sckolnik 17 WYW 501.58
 13 5 Sarah Bowman 16 CDEV 502.44
 13 1 Caitlin Klick 17 MBM 502.59
 13 6 Caitlin Healey 16 MBM 503.62
 12 3 Kim Richardson 17 WYW 504.32
 12 4 Beth Malinowski 16 HAC 504.77
 12 2 Patricia Finnerty 17 WYW 505.76
 12 5 Carolyn Bowman 15 CDEV 505.79
 12 1 Katie Martin 17 CDEV 506.78
 12 6 Lauren Dudley 17 WYW 508.96
 11 3 Lori Schwanhausser 15 WYW 510.82

After Heat 11, the remaining swimmers are straight seeded:

10 3 Courtlandt McKinlay 15 CDEV 515.65
 10 4 Kelly Ottenbreit 16 HNHS 516.29
 10 2 Ashley Orchard 17 PCSC 517.43
 10 5 Jessica Lasalle 17 CDEV 518.03
 10 1 Stephanie Nickse 17 WYW 518.04
 10 6 Rachel Reichard 17 MBM 518.52
 9 3 Sarah Martin 16 CDEV 519.35
 9 4 Grace Turman 16 BRS 519.49
 9 2 Kristyn Sayball 16 ARAC 519.89

You can also do this more elegantly using a simple GUI interface

as shown in Figure 20-2.

Factory Patterns 281

Figure 20-2 - GUI of straight seeding

For the characters to line up correctly, you have to change the

font to a monospaced font such as Courier New. In wxWidgets,

the method to use is

seedList->SetFont(wxFont(8, wxFONTFAMILY_SWISS,

wxFONTSTYLE_NORMAL,

 wxFONTWEIGHT_NORMAL,false,

 wxT("Courier New")));

Or you could use the Grid display widget instead as shown in

Figure 20-3.

Factory Patterns 282

Figure 20-3 --Seeding GUI using the Grid widget

Example programs on GitHub

1. ConsoleNamer – console version of Simple factory.

2. UINamer - GUI version of Simple Factory.

3. SwimSeed – Console version of seeding factory in a

single file

4. SwimSeedClasses – Console seeding divided in classes

and headers.

5. SwimDisplay – GUI Seeding using 2 list boxes.

6. SwimGrid – GUI Seeding using the Grid widget.

Factory Patterns 283

The Abstract Factory Pattern 284

21. The Abstract Factory Pattern

The Abstract Factory pattern is one level of abstraction higher

than the factory pattern. You can use this pattern when you want

to return one of several related classes of objects, each of which

can return several different objects on request. In other words,

the Abstract Factory is a factory object that returns one of several

groups of classes. Which class from that group is to be used

might even be decided by a Simple Factory.

One classic application of the abstract factory is the case where

your system needs to support multiple “look-and-feel” user

interfaces, such as Windows, Gnome or OS/X. You tell the

factory that you want your program to look like Windows and it

returns a GUI factory which returns Windows-like objects. Then

when you request specific objects such as buttons, check boxes

and windows, the GUI factory returns Windows instances of

these visual interface components.

A GardenMaker Factory

Let’s consider a simple example where you might want to use

the abstract factory in your application.

Suppose you are writing a program to plan the layout of gardens.

These could be annual gardens, vegetable gardens or perennial

gardens. However, no matter which kind of garden you are

planning, you want to ask the same questions:

1. What are good border plants?

2. What are good center plants?

3. What plants do well in partial shade?

…and probably many other plant questions that we’ll omit in this

simple example.

The Abstract Factory Pattern 285

The Plant class

We’ll start by defining a class for each plant. In this simple

example, the Plant class stores only the plant’s name and returns

it as a string.

class Plant {
private:
 string plantName; //the name
public:
 Plant(string pname) { //constructor saves name
 plantName = pname;
 }
 string name() { //returns the name
 return plantName;
 }
};

A Garden class

Then, we need to define a Garden class that contains several

plants. Here, we create garden containing three types of plants:

//base Garden class
class Garden {
protected:
 Plant* sunnyPlant; //pointer to sunny plant
 Plant* shadePlant; //pointer to shade plant
 Plant* borderPlant; //pointer to border plant
 string name; //name of the Garden

public:
 Garden(const string gname) {
 name = gname; //save the name
 }
 string getName() {
 return name; //get the name
 }
 Plant* shade() { //get the shade plant
 return shadePlant;
 }
 Plant* sunny() { //get the sunny plant
 return sunnyPlant;
 }

The Abstract Factory Pattern 286

 Plant* border() { //get the border plant
 return borderPlant;
 }
};

 Now we create 3 classes derived from Garden for 3 types of

gardens: Veggie, Perennial and Annual. Here are two of them:

class VeggieGarden :public Garden {
public:
 VeggieGarden():Garden("Vegetable") {
 sunnyPlant = new Plant("Corn");
 borderPlant = new Plant("Peas");
 shadePlant = new Plant("Broccoli");
 }
};

class AnnualGarden :public Garden {
public:
 AnnualGarden():Garden("Annnual") {
 sunnyPlant = new Plant("Marigold");
 borderPlant = new Plant("Alyssum");
 shadePlant = new Plant("Coleus");

};

So, matter what kind of Garden you choose, you can ask which

plants are good as border, in full sun or in the shade. This is the

crux of a Abstract Factory. You can see it in the visual interface

in Figure 21-1.

The Abstract Factory Pattern 287

Figure 21-1- Garden planner abstract factory

How the GUI works
Whenever you have a GUI where there ae several click events

(listbox and 3 buttons), you probably should use a Mediator

pattern to handle communication between the visual widgets.

And this is particularly useful when you are working with

systems like wxWidgets, where all the drawing takes place in a

Paint event.

You must create a class derived from wxPanel that contains the

paint event code:

//derived panel so we can create paint event
class PaintPanel : public wxPanel {
private:
 Mediator* med;
public:
 int width, height;
 PaintPanel(wxWindow* parent,
 wxWindowID id = wxID_ANY,

 const wxPoint& pos = wxDefaultPosition,
 const wxSize& size = wxDefaultSize,

 long style = wxTAB_TRAVERSAL,

The Abstract Factory Pattern 288

 const wxString& name = wxPanelNameStr); {}

//the paint event handler
void OnPaint(wxPaintEvent& event);

 void setMediator(Mediator* med);
};

Note that onPaint is just a suggested name for the method that

does the painting: you can call it anything you like. That onPaint

method could look like this:

//PaintPanel is where the painting occurs
void PaintPanel::OnPaint(wxPaintEvent& event) {
 wxPaintDC dc(this);
 //fill color=gray
 dc.SetBrush(wxColor(200, 200, 200));
 //draw the shade circle
 dc.DrawCircle(wxPoint(40, 40), 40);

 //paint the names of the plants
 Garden* gd = med->getCurrentGarden();
 //coordinates obtained by trial and error
 dc.DrawText(wxString(gd->sunny()->name()),

wxPoint(100, 120)); //sunny
 dc.DrawText(wxString(gd->shade()->name()),

wxPoint(15, 35));
 dc.DrawText(wxString(gd->border()->name()),

wxPoint(65, 200));
}

This is the simplest case, where all the plant names are drawn all

the time. If we want to draw them only after the corresponding

button has been clicked, you need to check the Mediator for a

flag that says whether or not to draw each plant name yet.

if (med->showSun())
dc.DrawText(wxString(gd->sunny()->name()),

wxPoint(100, 120)); //sunny
 if (med->showShade())

dc.DrawText(wxString(gd->shade()->name()),
wxPoint(15, 35));

The Abstract Factory Pattern 289

if (med->showBorder())

 dc.DrawText(wxString(gd->border()->name()),

wxPoint(65, 200));

The Mediator then has three variables representing whether to

draw each of the plant names:

class Mediator {
private:
 vector<Garden*> gardens;
 wxListBox* listbox;
 wxFrame* frame;
 Garden* currentGarden;

 bool show_sun = false;
 bool show_shade = false;
 bool show_border = false;

And the three buttons in the display each set one of those

variables to true. They are all reset to false when you select

another garden type.

So we have here a fairly simple example of a Abstract Factory.

The factory selects a garden which itself is made up of three

Plant classes. In a more advanced system, the number of plants

of each type could be variable.

Example program In GitHub

1. AbsFactory – Abstract Factory using the Garden Planner.

Adapters 290

22. Adapters

The Adapter pattern is used to convert the programming

interface of one class into that of another. We use adapters

whenever we want unrelated classes to work together in a single

program. The concept of an adapter is thus pretty simple; we

write a class that has the desired interface and then make it

communicate with the class that has a different interface.

There are two ways to do this: by inheritance, and by object

composition. In the first case, we derive a new class from the

nonconforming one and add the methods we need to make the

new derived class match the desired interface. The other way is

to include the original class inside the new one and create the

methods to translate calls within the new class. These two

approaches, termed class adapters and object adapters are both

fairly easy to implement in C++.

Moving Data between Lists

Let’s consider a simple program that allows you to enter student

names into a list, and then select some of those names to be

transferred to another list. Our initial list consists of a class roster

and the second list, those who will be doing advanced work, as

shown in Figure 22-1

Adapters 291

Figure 22-1 - Student selector- one selected

In this program you can select any name and the Move button

becomes enabled. If you click on it, that student’s name will be

moved to the right-hand column of students selected for some

special training, as shown in Figure 22-2. Note that the Move

button is then disabled until you select another student.

The reverse also applies. If you select one student in the right-

hand list, the Restore button is enabled, and you can move that

student back into the left column.

Figure 22-2 - Selected student moved to right column.

Adapters 292

Now, since we are just moving names around, our students could

just be strings. But, if you want to display the student data in a

grid, you don’t really have any data. In this simple example, we

just display the lengths of the first and last names. This is shown

in Figure 22-3.

Figure 22-3 - Grid showing name lengths

So, how do we write an Adapter to deal with this simple

problem. First, let’s summarize the methods we created to

manipulate the right hand list box in Figure 22-2. They are all

methods of the wxListBox, and amount to

void Clear()
void Append()
void Delete(int index)
int GetSelection();
wxString GetString(int index);

Now, in wxWidgets, you have to connect click events (such as

on listboxes) to your code. This is easiest if you use the Bind

method in the same class the builds the GUI. The event connects

to a method in that same class (because this is simplest) and then

calls the Mediator to take care of the interactions between

widgets. So, to connect the two listboxes to code we have a

Bind call for each of them:

Adapters 293

//connect the click events to the listboxes
studentList->Bind(wxEVT_LISTBOX,

&StudentFrame::onClick, this);

advList->Bind(wxEVT_LISTBOX,

&StudentFrame::advClick, this);

Then then two onClick methods call different methods in the

Mediator:

//tells the Mediator the listbox has been clicked
void StudentFrame::onClick(wxCommandEvent& event) {
 med->onListClick(event);
}

//The right hand listbox has been clicked.
void StudentFrame::advClick(wxCommandEvent& event) {
 med->advListClick(event);
}

The Mediator can then handle the button enable/disable code,

and note the selected name:

//left list box click comes here.
 void Mediator::onListClick(wxCommandEvent& event) {
 moveButton->Enable();
 restoreButton->Disable();
 }

 //right list box click comes here.
 void Mediator::advListClick(wxCommandEvent& event) {
 moveButton->Disable();
 restoreButton->Enable();
}

The Move and Restore button clicks fetch the name and move it

to the other listbox:

//move name to right
void Mediator::moveClick() {
 int index = listbox->GetSelection();
 wxString nm = listbox->GetString(index);
 advListBox->Append(nm); //add name to right

Adapters 294

 listbox->Delete(index); //remove name from left
 moveButton->Disable(); //disable until lb clicked
}

//move name to left
void Mediator::restoreClick() {
 int index = advListBox->GetSelection();
 wxString nm = advListBox->GetString(index);
 advListBox->Delete(index); //remove from right
 listbox->Append(nm); //add to left
 restoreButton->Disable(); //button disable
}

The Grid Adapter code

There are a couple of changes in connecting to the grid because

of the event model that wxWidgets uses. First, you need to bind a

different click event:

advGrid->Bind(wxEVT_GRID_SELECT_CELL,

 &StudentFrame::advClick, this);

And in the Mediator, the advListClick method needs to pass the

event to the Grid adapter, because it contains the row number

that was clicked on, and there is no easy way to find out from the

grid which cell was clicked on:

//right list box click comes here.
 void Mediator::advListClick(wxGridEvent& event) {
 advListBox->onClick(event); //send the current row
 moveButton->Disable();
 restoreButton->Enable();
 }

When you click on a cell of a grid row, it is helpful to highlight

the entire row, as happens in a listbox. You can set that selection

mode when you create the grid:

//select whole row

grid->SetSelectionMode(wxGrid::wxGridSelectRows);

Adapters 295

This makes selection of a row look like Figure 22-4.

Figure 22-4- Shows selected row

But within the adapter code, the Append method is the only one

that is radically different, because it splits each name into first

and last name strings that then get placed in the first two

columns. Then to show further information, it inserts the lengths

of these two strings in the next two columns.

void GridAdapter::Append(wxString wname) {
grid->AppendRows(1); //append one row
grid->DeselectRow(0); //deselect
that row

 //here is where to move it
int rownum = grid->GetNumberRows() - 1;

 string name = wname.ToStdString();
 //separate at space
 vector<string>

names = Strfuncs::split(name, " ");
 grid->SetCellValue(rownum, 0,

wxString(names[0])); //first
 grid->SetCellValue(rownum, 1,

wxString(names[1])); //last
 //get lengths of first and last name
 //last 2 cells are numbers
 grid->SetCellValue(rownum, 2,

wxString(std::to_string(names[0].size()))
);

Adapters 296

 grid->SetCellValue(rownum, 3,

wxString(std::to_string(names[1].size())));
}

Class Adapters

In this first, simple example, we simply moved string to the right

and left. But in a more real-world application, we would

probably have a class representing each student, and each

instance would contain somewhat more useful student data.

Let’s consider a simple Student class containing some scores and

the first and last name:

class Student {

private:
 string name;
 string frname{ "" };
 string lname{" "};
 int iq;
 int score;
public:
 Student(wxString nm);
 string getName();
 int getIQ();
 int getScore();
};

It would be nice if we could just add these Student objects to the

ListBox and have the names displayed automatically. But as far

as we know the only list box that could do that was in Visual

Basic. So, it is up to us to create a class derived from wxListBox

that appears to work that way. In fact, what we do is create a

vector to hold the Student objects and clear and reload the

listbox whenever the Student list changes.

The constructor just passes on the size and panel to the wxList

constructor:

Adapters 297

StudentList::StudentList(wxPanel* panel, wxSize size):
 wxListBox(panel, wxID_ANY, wxDefaultPosition, size,

 0, NULL, 0L, wxDefaultValidator) {}

Every time you add a Student to the list, it actually adds it to the

vector and updates the listbox:

//append a new Student to vector
//and add a string to the list box
void StudentList::append(Student* st) {
 students.push_back(st); //vector of students
 Append(st->getName()); //display name
}

If you delete a student from a list, the vector is updated and the

listbox cleared and redrawn:

//remove a student from the vector and the list
void StudentList::remove(int index) {
 students.erase(students.begin() + index);
 redraw();
}

//redraw the listbox after any change
void StudentList::redraw() {
 Clear();
 for (int i = 0; i < students.size(); i++) {
 Append(students[i]->getName());
 }
}

And, if you want to get the currently selected Student from the

listbox, you get its index and return the student at that index.

//return the student currently selected
Student* StudentList::getSelected() {
 int index = GetSelection(); //selection
 Student* std = students[index]; //get Student
 return std;
}

So, what we have done is create a class Adapter, derived from

the basic wxListBox. Our demo program is made up of two

Adapters 298

StudentList objects, each with their own internal vector. The

calling program works just the same as the original one shown in

Figure 22-2, except that it accesses two Adapter classes.

The GridAdapter class

In making an Adapter class for the we find that we can put the

names in separate columns and actual data in the next two

columns. We’ll call these IQ and score (such as on a standardized

test). Since we don’t have any actual values for these fictitious

students, we’ll create them using a random number generator,

that generates integers in a specified range. That generator is

contained in a static method within our Student class:

class Student {
 //static random number generator
 static int randint(int min, int max) {
 int value = rand(); // rand in 0 to 1.0
 int range = value % (max - min); //range
 return range + min; //add min
 }
private:
 string name;
 string frname{ "" };
 string lname{" "};
 int iq;
 int score;
public:
 Student(wxString nm);
 string getName(); //get full name
 int getIQ(); //get IQ
 int getScore(); //get test score
 string getFrname(); //get first name
 string getLname(); //get last name
};

Then, for each student, we generate a random IQ and score in the

constructor and separate the name into two parts:

Adapters 299

Student::Student(wxString nm) {
 score = Student::randint(25, 35); //score
 iq = Student::randint(115, 145); //IQ
 name = nm;
 //assume there are two names sep by a space
 vector<string> names =

Strfuncs::split(name, " ");
 frname = names[0];
 if(names.size() >1)
 lname = names[1];
}

When we add a student to the grid, we add them to the students

vector and then append that student to the grid:

//This append adds a student to the vector and then
adds it to the grid
void GridAdapterClass::append(Student* st) {
 students.push_back(st); //vector of students
 Append(st);
}

//This Append loads a row of the grid
void GridAdapterClass::Append(Student* st) {
 AppendRows(1); //append one row
 DeselectRow(0); //deselect that row

//here is where to move it
int rownum = GetNumberRows() - 1;

 SetCellValue(rownum, 0,
wxString(st->getFrname())); //first

 SetCellValue(rownum, 1,
wxString(st->getLname())); //last

 //last 2 cells are numbers-- show scores
 SetCellValue(rownum, 2,
 wxString(std::to_string(st->getIQ())));

SetCellValue(rownum, 3,
 wxString(std::to_string(st->getScore())));

}

Deleting a line from the grid amounts to making sure it is not

highlighted, removing it from the grid and then from the vector

as well.

Adapters 300

//Delete current row
void GridAdapterClass::Delete() {
 if (curRow >= 0) {

//unselect row before deletion
 DeselectRow(curRow);
 DeleteRows(curRow, 1);
 remove(curRow); //delete from vector
 }
}

//remove student from vector
void GridAdapterClass::remove(int index) {
 students.erase(students.begin() + index);
 redraw();
}

Finding the current row

Unlike a list box, there is no concept of a current row, since you

can select any group of cells you want. If you want to pass the

click event from the Mediator on into the GridAdapter class, you

can save the row from the event object.

//saves the currently clicked row
void GridAdapterClass::onClick(wxGridEvent& event) {
 curRow = event.GetRow(); //save current row
}

Or you can find it by running through all the cells in the first

column to find the first one selected and saving that in that same

curRow variable:

//find the currently selected row
int GridAdapterClass::GetSelection() {
 int found = -1; int row = 0;
 //loop through cells in first row
 while (found < 0 && (row < GetNumberRows())) {
 if (IsInSelection(row, 0)) {
 found = row; //save that row
 }
 row++; //otherwise keep looking
 }

Adapters 301

 if (found >= 0) {
 curRow = found; //save current row
 }
 return curRow;
}

Object adapters and class adapters

The adapter we use in the string examples can be termed an

object adapter because the GridAdapter code contains the grid

and emulates a listbox. In the second case, we derive new classes

from the wxListBox and the wxGrid that have methods much

like those of the listbox. This is a minor distinction, but it does

allow us to keep vectors of Student objects inside the class.

Example Code on GitHub

1. BasicAdapter – passes strings between two listboxes

2. GridAdapter -- passes strings between list box and

grid.

3. StudentListAdapter – passes objects between two

listbox classes

4. StudentListGridAdapter – passes objects between a

listbox class and a grid class.

The Bridge pattern 302

23. The Bridge pattern

At first sight, the Bridge pattern looks much like the Adapter

pattern, in that a class is used to convert one kind of interface to

another. However, the intent of the Adapter pattern is to make

one or more classes’ interfaces look the same as that of a

particular class. The Bridge pattern is designed to separate a

class’s interface from its implementation, so that you can vary or

replace the implementation without changing the client code.

More specifically, the Bridge is not between different visual

interfaces as we saw with the Adapter patterns, but between the

data and the visual representation.

Suppose that we have a program that displays a list of products

in a window. The simplest interface for that display is a simple

Listbox. But, once a significant number of products have been

sold, we may want to display the products in a table along with

their sales figures.

Since we have just discussed the adapter pattern, you might think

immediately of the class-based adapter, where we adapt the

interface of the Listbox to our simpler needs in this display. In

simple programs, this will work fine, but as we’ll see below

there are limits to that approach.

Let’s further suppose that we need to produce two kinds of

displays from our product data, a customer view that is just the

list of products we’ve mentioned, and an executive view which

also shows the number of units shipped. We’ll display the

product list in an ordinary Listbox and the executive view in a

Grid display. These two displays are the implementations of the

display classes. We illustrate such a bridge in Figure 23-1.

The Bridge pattern 303

Figure 23-1 - Bridges between data and List and Grid displays

Our actual datafile just shows the text and quantities separated

by two hyphens:

Brass plated widgets --1,000,076
Furled frammis --75,000
Detailed rat brushes --700
Zero-based hex dumps--80,000
Anterior antelope collars --578
Washable softwear --789,000
Steel-toed wing-tips --456,666

We create two classes: Product which holds one entry and

Products which holds a vector of Product instances.

class Product {
private:
 string name; //product name
 string count; //inventory or sales count
public:
 Product(const string nstring);
 string getName(); //return the name
 string getCount();//return the count
};

The actual code for Product parses each string into the product

name and count:

The Bridge pattern 304

Product::Product(const string nstring) {
 size_t index = nstring.find("--");
 name = nstring.substr(0, index - 1);
 count = nstring.substr(index + 2,

nstring.length());
}
string Product::getName() {
 return name;
}
string Product::getCount() {
 return count;
}

The Products class reads each line, creates a Product instance

and stores it in a vector:

class Products {
private:
 vector<Product*> prods; // list of products
public:
 Products(const string filename); //read file
 vector <Product*> getProducts(); //return vector
};

These two classes are the entire data side of the Bridge.

The Bridge
Now, we want to define a single, simple interface that remains

the same regardless of the type and complexity of the actual

implementation classes. We’ll start by defining an abstract

Bridger class:

//abstract Bridge class
class Bridger {
 //add data to the other side of the bridge
 virtual void addData(Products* prod) = 0;
};

This class is so simple that it just receives a List of data and

passes it on to the display classes.

On the other side of the bridge are the implementation classes,

which usually have a more elaborate and somewhat lower level

The Bridge pattern 305

interface. Here we’ll have them add the data lines to the display

one at a time.

 //abstract class defining the one method in the
VisList class
class VisList {
public:
 virtual void addLines(Products* prod)=0;
};

The Bridge between the interface on the left and the

implementation on the right is the ListBridge class which

instantiates one or the other of the list display classes. Note that

it extends the Bridger class for use of the application program.

//General bridge between data and any VisList class
class ListBridge :public Bridger {
private:
 VisList* visList;
public:
 ListBridge(VisList* vl);
 void addData(Products* prod);
};

In the current example, we use the Bridge class twice: once to

display the Listbox on the left side and once to display the Grid

table on the right side.

The power and the simplicity of the Bridge pattern becomes

obvious when you realize that you can completely change the

display by replacing either or both of the two VisList classes that

display the data. You don’t have to change the Bridge class code:

just give it new VisLists to display. And those classes can be

anything, as long as they implement the simple VisList methods.

The VisLists
The VisList for Listbox is quite simple: it is derived from VisList

and wxList.

The Bridge pattern 306

//a listbox that holds a list of products,
//derived from VisList and ListBox
class LbVisList:public VisList,public wxListBox
{
public:
 LbVisList(wxPanel* p, wxSize sz);
 void addLines(Products* prods);

};

And the implementation of that class just adds lines to the ListBox:

//a VisList for a ListBox
//derived from wxListBox
LbVisList::LbVisList(wxPanel* p, wxSize sz):

wxListBox(p, wxID_ANY, wxDefaultPosition, sz, 0,
 NULL, 0L, wxDefaultValidator) {
}
//add lines from the Products vector
void LbVisList::addLines(Products* prods) {
 vector<Product*> products = prods->getProducts();
 for (Product* p : products) {
 Append(wxString(p->getName()));
 }

}

The VisList for the Grid display is equally simple. Other than the

Grid initialization code, it is almost exactly the same as for the

ListBox:

//This is a Grid display which also has the VisList
interface "addLines"
GrdVisList::GrdVisList(wxPanel* p, wxSize sz) :
 wxGrid(p, wxID_ANY, wxDefaultPosition, sz) {
 CreateGrid(0, 2);
 SetColSize(0, 140); //set column sizes
 SetColSize(1, 80);

 SetRowLabelSize(0); //hide row label
 SetColLabelSize(0); //hide column labels
}

The Bridge pattern 307

void GrdVisList::addLines(Products* prods) {
 vector<Product*> products = prods->getProducts();
 for (Product* p : products) {
 AppendRows(1); //add one row

 //here is where to move it
 int rownum = GetNumberRows() - 1;
 SetCellAlignment(rownum, 1,

wxALIGN_RIGHT, wxALIGN_CENTER);

 //insert the two values in columns 0 and 1
 SetCellValue(rownum, 0,

 wxString(p->getName())); //first
 SetCellValue(rownum, 1,

 wxString(p->getCount())); //last
 }
}

How to set up the Bridge
Once you see how simple it is to create these bridges in the main

code, you will understand why Bridges are so useful. Here is all

the code:

//create the listbox
leftList = new LbVisList(leftPanel, wxSize(150, 160));
leftSzr->Add(leftList);

//create right hand grid
rightList = new GrdVisList(rightPanel,

wxSize(350, 160));
rightSzr->Add(rightList);

//create the products class and read in the data
prod = new Products("products.txt");

//create left bridge
lbridge = new ListBridge(leftList);
lbridge->addData(prod);

//create right bridge
rbridge = new GridBridge(rightList);
rbridge->add Data(prod);

The Bridge pattern 308

Other VisLists
You can easily modify this design by creating a sorted ListBox

and a sorted Grid. If they are all sorted in the same way, you

could do the sorting in the Products class. But if each display is

sorted differently, you would do the sorting in the VisList

classes. Suppose we sort on VisList by name and the other by

quantity as shown in Figure 23-2

Figure 23-2 - Sorted Vislists using the same Bridge.

Then you would sort the ListBox by name by copying the array

and sorting it in the SortLbVisList class:

void LbVisList::addLines(Products* prods) {
 vector<Product*> products =

prods->getProducts();
 //sort the products by name
 vector <Product*> sortProd;
 //sort list by name
 //copy list
 for (Product* p: products) {
 sortProd.push_back(p);
 }

The Bridge pattern 309

 //sort list by name
 for (int i = 0; i < sortProd.size(); i++) {
 for (int j = i; j < sortProd.size(); j++) {
 if (sortProd[i]->getName() >
 sortProd[j]->getName()) {
 swap(sortProd[i], sortProd[j]);
 }
 }
 }
 //now load the list with the sorted results
 for (Product* p : sortProd) {
 Append(wxString(p->getName()));
 }
}

Likewise, you can sort the list by count. However, our input data

is all comma separated at the thousands and millions, and there is

no simple parser to read these numbers. However, we can simply

step through each string and skip any characters that aren’t

digits. This algorithm was suggested on the Runestone Academy

site[22].

//convert comma space number into integer
int GrdVisList::getInteger(string s) {
 string digits = "";

 for (int i = 0; i < s.length(); i++) {
 char x = s[i];
 if (isdigit(s[i])){
 digits += s[i];
 }
 }
 return atoi(digits.c_str());
}

The sorting code is then;

The Bridge pattern 310

//sort product list by count
for (int i = 0; i < sortProd.size(); i++) {
 for (int j = i; j < sortProd.size(); j++) {
 if (getInteger(sortProd[i]->getCount()) >

 getInteger(sortProd[j]->getCount())) {
 swap(sortProd[i], sortProd[j]);
 }
 }
}

Summary

The Bridge pattern provides a way to separate the data from the

display cleanly so that you can modify either one without

changing the other. Since this is a book about moving form

Python to C++, this particular pattern can be written much more

succinctly in Python because you need not declare variables or

types. The advantage of C++ here is that this strong typing keeps

you from making bizarre mistakes in managing coding between

all of these abstract and concrete classes. So, while creating all

this boiler plate code may seem tedious, overall, it makes your

programming faster and more efficient.

Example programs on GitHub

1. Bridger1 –- The bridges between the data and the

ListBox and Grid.

2. SortBridges -- Bridges between sorted list and grid

displays

References

1. https://runestone.academy/ns/books/published/thinkcpp/

Chapter15/Parsing_numbers.html

The Bridge pattern 311

The Bridge pattern 312

Index

! logical Not, 61

#include directives, 103

#include statement, 29

& reference operator, 75

&& logical And, 61

* dereferencing pointer, 75

|| logical Or, 61

== logical equals, 61

Abstract Bridger class, 304

Abstract class

or interface, 270

Abstract Factory, 284

Abstract functions, 109

accelerator character in

Menus, 156

Adapter pattern, 290

Adding rows to a Table, 236

Adding two numbers in

wxWidgets, 149

AI systems, 18

Alignment

in wxWidgets, 143

apostrophe

as digit separator, 115

Arguments

in functions, 72

Arithmetic operations, 27

Arithmetic shortcuts, 28

Armadillo math library, 187

installation, 197

overview, 187

Array of char, 46

Arrays

and pointer, 76

declaring contents, 49

printing, 50

two dimensional, 50

auto keyword, 32

Binary file

reading, 47

Binary files, 46

Bind, 176

wxWidgets events, 148

Binding MenuItems, 157

Bitwise operators, 30

BlueLabel class

in wxWidgets, 145

Book organization, 21

bool type, 25

Box sizer, 142

brace construction, 94

brace notation

to initialize class

variables, 90

braced initializers, 94

braces

in conditions, 60

in functions, 29

positions of, 31

Braces

in classes, 90

break

and continue, 65

break statement, 63

Bridge Design Pattern, 302

Bridge pattern, 302

Builder class

The Bridge pattern 313

builds wxWidgets

windows, 143

C strings, 55, 80

C++ array type, 49

C++ development systems,

33

Call by reference, 77

Call by value, 77

Cell class, 122

char

array, 46

char type, 25

character constants, 26

Character Constants, 26

Checkbox styles, 177

CheckBoxes, 175

CheckListBoxes, 170

Choices and Listboxes, 163

cin

getline method, 38

cin object, 38

converts to correct type,

38

class

in templates, 131

class adapters, 290

Class Adapters, 296

Classes, 89

braces, 90

constructor, 90

deriving, 96

end with semicolons, 90

inheritance, 92

methods, 89

Classes and headers, 100

CLion, 35

CodeBlocks, 34

Collections

in MySQL, 257

Colors

in wxWidgets, 144

combing conditions, 61

combining conditions, 61

ComboBox, 174

Command Button, 152

Command Design Pattern,

154

Comments

multi-line, 24

single line, 24

comparing strings, 62

conditions

combining, 61

Connector C++

Table functions, 256

Connector C++ code, 244

const declarations

in functions, 74

Constant classes, 112

constants

character, 26

constructor

in classes, 90

Constructor, 90

default value, 94

continue, 65

Copy constructor, 126

deleting, 128

syntax, 127

cout object, 29, 37

Curve fitting

in Armadillo, 195

Data encapsulation, 89

data method

creating mutable C-

string, 80

Data types, 25, 190

Database

The Bridge pattern 314

Column class, 234

Database classes, 229

Database tables, 233

Databases, 219

dbMap, 252

DButton abstract class, 152

Default arguments

in functions, 73

Default value

in constructor, 94

delete method, 116

Deriving new classes, 96

Design patterns, 269

Design Patterns

Abstract Factory pattern,

284

Adapter Pattern, 290

Bridge Pattern, 302

Command, 154

Facade, 249

Factory Method Pattern,

276

Mediator, 172

Simple Factory Pattern,

273

destructor method

class, 117

Dialog Boxes, 158

do while loop, 52

double

number to string, 58

double type, 25

doubly linked list, 121

elif

else if, 60

else clause, 60

else if clause, 60

Employee class, 93

Encapsulation, 270

endl object, 29, 37

enum, 155

Error bars

in ROOT, 213

Events in wxWidgets, 147

Façade pattern

for databases, 249

Factory Method Pattern,

276

Factory Patterns, 273

File Dialog, 159

File handling, 45

Files

binary, 46

float type, 25

for loop, 49, 51

range based, 51

Format function

error handling, 44

symbols in, 42

Formatting

in C++, 40

in Python, 39

Fourier transform, 193

Frame

in wxWidgets, 139

friend declarations, 112

Function

indentation, 69

Function prototypes, 71

functions, 69

polymorphism, 71

Functions

abstract, 109

arguments, 72

call by reference, 77

call by value, 77

default arguments, 73

order, 70

The Bridge pattern 315

Gang of Four

GoF book, 269

GardenMaker Factory, 284

GitHub, 18

Grid Adapter, 294

Grid display widget, 281

GridAdapter class, 298

GridBag sizer, 149

head and tail pointers, 122

Headers

for classes, 100

heap, 115

Hexadecimal, 43

hidden copy constructor,

126

if statement, 60

ifstream object, 45

Include files

in wxWidgets, 142

include statement, 29

Indentation

in functions, 69

Inheritance, 92, 270

multiple, 105

private, 97

protected, 97

public, 97

public or private, 97

int type, 25

integer

number to string, 58

integers

lengths, 31

Interface, 270

iosteam library, 29

isChecked method, 157

iterator

in linked list, 124

Labels, 144

wxStaticText, 140

LAPACK, 187

Linked list

inserting, 125

iterator, 124

Linked lists, 121

LinkList class, 123

ListBoxes, 168

Append method, 169

Check, 170

finding the selection, 169

loading from string list,

169

multi-select, 169

style settings, 168

ListBridge class, 305

Bridge pattern, 305

long long type, 31

long type, 31

main function, 29

making decisions, 60

map object, 258

map type, 87

Maps, 87

fetching by key, 87

Math constant pi, 133

MatPlotLib, 204

Matplotlibplusplus, 204

Matrices, 188

columns and rows, 190

creating, 188

Matrix methods

in Armadillo, 190

Matrix transpose, 191

Mediator, 288

Mediator class, 172

memory leaks, 118

MenuItems, 155

Menus in wxWidgets, 154

The Bridge pattern 316

Merging sets, 84

Method section

when using prototypes,

102

Methods

in classes, 89

Modules, 263

in a Visual Studio project,

264

modulo, 27

most common mistake

= instad of ==, 61

Multiple inheritance, 105

Multi-select ListBoxes, 169

MySQL, 243

installation, 243

numeric types, 251

MySQL C++ classes, 248

MySQL programming

in Visual Studio, 245

MySQL query

using Connector C++,

246

MySQL Workbench, 244

NameFactory, 275

Namespaces, 261

newline, 26

object adapters, 290

Object adapters, 301

object composition, 270

Object composition, 270

ofstream object, 45

onClick event method, 148

OnlineGDB

development system, 33

OpenBLAS, 187

Order

of functions, 70

Other VisLists, 308

Plotting in C++, 201

using DrawLinesin

wxwidgets, 203

using wxWidgets, 201

pointer

dereferencing, 75

Pointer, 75

Pointers

as function arguments, 77

in vectors, 98

polymorphism

functions, 71

Polymorphism, 107

pop_back

in vectors, 53

port 33060

instead of 3306, 246

pragma once, 104

Prepared Queries, 238

Prepared Queries in

MySQL, 254

Private inheritance, 97

private variables, 90

Program to an interface, 270

Protected inheritance, 97

protected variables, 90

Prototypes

and functions, 71

in header, 102

Public inheritance, 97

public methods and

variables, 93

public section

of class, 93

Pure virtual functions, 109

push_back

in vectors, 52

Python

types in, 25

The Bridge pattern 317

RadioButtons, 163

finding the calling object,

167

finding which is selected,

164

responding to clicks, 165

Rectangle class, 89

reference operator

ampersand, 75

Relational databases, 219

return statement, 69

Reverse iterator

in linked list, 125

ROOT interpreter, 208

ROOT plotting package,

207

error bars, 213

for a C compiler, 212

marker styles, 210

writing C++ code, 211

SciPlot, 205

Vec, 205

Selecting Grid regions, 180

semicolon, 23

at end of class, 90

semicolons

at the end of classes, 90

Sets, 83

find method, 83

merging, 84

of strings, 84

tie function, 86

short type, 31

Shortcuts

arithmetic, 28

Simple C++ program, 29

Simple Factory Pattern, 273

singly linked list, 121

size_t type, 27

Sizers

Layout managers, 142

Smart pointers, 118

SQL, 220

SQLite

compiling using Visual

Studio, 223

installing, 221

programming in C++,

223

Results class, 232

SQLite database, 221

SQLite queries

callback structure, 230

Sqlite3 prepared statement

interface

eliminates callback, 239

sqlite3_open, 230

sqlite3_open_v2, 230

sqltPrepQuery

eliminates callback, 241

Square class

derived from Rectangle,

92

Standard Template Library,

129

statements, 23

static class members, 111

std library, 29

std namespace, 39

stod

string to double, 58

stof

string to float, 58

string

insert, 56

range based access, 58

string type, 25

strings, 55

The Bridge pattern 318

begin, 57

combining, 55

comparing, 62

end, 57

replacing characters, 56

reversing in place, 56

to numbers, 58

strongly typed, 24

Structured Query Language,

220

swap function, 129

Swimmer class, 277

switch statement, 63

Template functions, 130

Templates, 129

Templates of classes, 132

ternary operator, 67

The Adapter pattern, 290

this pointer, 95

in classes, 95

tie function, 86

in sets, 86

to_string

number to string, 58

ToStdString

in wxString, 140

Tree widget, 182

Tuples, 85

retrieving values by

index, 85

tie function, 86

typed

strongly, 24

typename

in templates, 131

unique_ptr’s, 118

unordered_set, 83

unsigned type, 31

using declaration, 38

using namespace, 29

using statements, 39

Value object

in query return, 253

Variable names, 23

Variables

declaring, 24

Vec

in SciPlot, 205

vector

methods, 54

Vector

of pointers, 98

vectors, 52

creating a new, 54

Vectors

passing to functions, 79

Virtual functions, 108

pure, 109

VisList abstract class, 305

Visual Studio, 34

while loop, 52

wxButton, 146

wxGBSpan method, 150

wxGrid widget, 178

wxListBox, 292

wxMenu, 154

wxMenuBar, 154

wxPanel, 140

wxPoint, 141

wxPython

related to wxWidgets,

138

wxRadioButtons, 163

wxString, 140

wxT, 140

wxWidgets, 137, 292

colors, 144

ComboBox, 174, 175

The Bridge pattern 319

events, 147

Frame, 139

include files, 142

wxPanel, 140

wxTreeCtrl, 182

The Bridge pattern 320

