Moving from
Python to C' ++

Writing better object-oriented programs

James W Cooper

Moving from
Pytrh(ﬂ n to C, r‘1|=

James W Cooper

7€

Rev 3-15-2024

Fairfield Easton Press
2024

Other books by James W Cooper

Python Programming w/ Design Patterns, ISBN:0-13-757993-4
Flameout, ISBN: 9781706406358

Food Myths Debunked, ISBN:978-1502386007

Where to Dine in Nantucket, ISBN: 978-1-304-19277-6

The Hollow, ISBN: 5-800051-790432

Introduction to Cooking for Graduate Students

C# Design Patterns: A Tutorial, ISBN:0-201-84453-2

Visual Basic Design Patterns, ISBN: 0-201-70265-7

Java Design Patterns: A Tutorial, ISBN: 0-201-48539-7
Principles of Object-Oriented Programming in Java, 1-56604-
530-4

The Visual Basic Programmer's Guide to Java, 1-56604-527-4
Object Oriented Programming in Visual Basic, 1-880935-49-x
A Jump Start Course in C++ Programming, 0-471-03171-2
Visual BASIC for DOS, ISBN: 0-471-59772-4

Writing Scientific Programs Under OS/2, ISBN:0-471-51928-6
Microsoft QuickBASIC for Scientists, ISBN: 0-471-61301-0
The Laboratory Microcomputer, ISBN: 0-471-81036-3

The Minicomputer in the Laboratory, 2™ ed 0-471-09012-3
Introduction to Pascal for Scientists, ISBN: 0-471-08785-8
Spectroscopic Techniques for Organic Chemists 0-471-05166-7
The Minicomputer in the Laboratory, ISBN: 0-471-01883-X

Copyright © 2024 by James W. Cooper
All rights reserved. This book or any portion thereof may not be
reproduced or used in any manner whatsoever without the express
written permission of the publisher except for the use of brief
quotations in a book review or scholarly journal.

First Printing 2024

Fairfield Easton Press
48 Old Driftway
Wilton, CT 06897

WWW.jameswcooper.com

Contents
INErOAUCHION ... 17
How to use GitHUb.........cccooviiiiiiiice e 18
Reference.......ccoovviiiiiiiiii 19
Book 0rganizationcccoceiiiiiienien e 21
PART I — Learning CHt......ccoviiiiiiiiiniesieeie e 21
PART II -Application Developmentcc.coevriervreennnnnns 22
Part III — Design patterns.........ccuevvereriirniieiieeniee e 22
1. Basic CH+ SYNEAX....cooveiviiirieieniesee e 23
VATIaDIES ..eovveiiiiiiiee et 23
StateMENtSoovviiiiiii i 23
Declaring variable tyPescccoverieriiiiiniieiee e 24
Data types in CHoiiiiceieeee s 25
Character CONStants...........cuvvrveriiiniciieese e 26
The SIZ& T EYP..cevieieieiiieiie it 27
Arithmetic OPerationscecveiereeiiiieneeseseee e 27
Converting between NUMETIC LYPESovvvrreerrerieeeenrereereeneenns 28
Arithmetic ShOTTCULSooviiiiiieiici e, 28
A COMPIELE PrOZIAIM ...ttt 29
BitWiSe OPETALOTS ...cvvevieieetiiiieie sttt 30
Types of INtEEETSveevveiiiiiiiiieeee e 31
Positions Of BIaces........ccoveveiiieeiiiieen e 31
The auto KeyWord.........ccceeieiiiiiiciicie e 32
EXample codeoovviiiiiiiiiiici e 32
RETerencescuvviiiiii i 32

2. CH+ Development SYSteMScoovvverrereereenerieeneseenenneas 33

Visual Studioccooiviiiiiiii s 34
COEBIOCKS ...ccuviiieiiiiiiieieies e 34
(O] 55 o) F PO U R PTPR PR 35
Other IDE SYSteMS....ccueeiveiiiiiiiieiiesieesiee et 36
Referencescovviirieiiiiee e 36
Input and OULPUL........coivieiiirieieere s 37
OUtPut USING COUL .vvviiiiiiiiiiieiee et 37
INPUL USING CIN .o 38
Reading in Whole linesccoceeiiiieiiniiieisce e 38
The std NAMESPACE.......eiveriirerie e 39
Formatting in Python.........c.cccocoeiiiniiiiic e, 39
Formatting in CH+ ..o 40
Symbols in format function..........c.cceevveeervniinis i 42
Alignment and fill formatting...........cccccceviiiinniniinienne. 43
Error Handling in formatting..........c.cccocveveiniencinniieee. 44
File handling.........ccocoiiiiiiiiiic e 45
Binary filescccvoiiiieiiiicie e 46
Reading a binary file ..., 47
Example files on GitHUbccccoeiiiiiniiiinc e 48
Referencesccovirieiiiiii e 48
Loops, Arrays and Stringscccoevveeereneenenieenenesee e 49
Two-dimensional arraysc.cceveereirirniieeiee e 50
The fOr 100D ..vveuvieiiie e 51
The range based for 100pccovvvvviciiinicrc e 51
The While 100PS ..o.vvieeiiiiceicec e 52

101 00 52

Vector Methods........ccooviiiiiiiiicii 54
SHANES vt 55
ReVersing a StriNgcoveerereeieneeiese e 56
String MEthods........cooieiieiieiie e 57
Changing StriNg CASE........ccvrrerreerrererirerreseesresreseenre e 58
Converting numbers to strings and vice-versa 58
Example Code on GitHUubcccoveviiiiiiiiiic e 59
5. Making DECISIONS.......cuervrriiieiiieiie e 60
EIf 1S “ElSE i .uviiiiiieiiiiee e 60
Combining ConditionS..........curvverererirereseeneseeeesre e 61
The Most Common Mistake..........c.coovniiiiniiinciinciens 61
COMPATING STENES «.vvevverveereireriee e nne e 62
A ticketing Program........ccccceveeeeiereeieene e 62
The switch statementc.cocveiiiiiiii s 63
Break and continue..........c.ccooovveeiiniiienic e 65
The ornery ternary OpPerator..........ccvvveverereereseesiesieseenienneas 67
Example programs on GitHub............cccocevveriiiiiciiicnns 68
6. FUNCHONS ...oovviiiiicc e 69
Function orderccocvvveiiiiiieic e 70
Polymorphism in functions...........ccoceeeeneiieennnicie e 71
FUunction prototypescocvevverieeiienie e 71
Passing arguments to functionscccoceeveerienienienienne. 72
Default argumentsccocceveieeienieiiene e 73
Using constant declarations..........ccoovevevnvreernneniennsieenennens 74
EXample programs..........ccoccvvveeeniiieinininee e 74

7. USING POINLELS .eovvviviiiiiiiiiiie e siee e 75

ATTays and POINLELS.......eerviiiiiiieiieiie e 76
Calling fUNCHONS ..vvveveiieeeiiresee e 77
Functions and AITaYS.........ccovveerienieiinesee e 78
C strings and POINLETSeevverrveeiieeiierie e 80
Example code on GitHUbcccooiviiiiiiiniie e 81

Sets, tuples and MaAPS.......c.cvvverereeieeneneee e 83
SEES vttt 83

MEIZING SELS ..ottt 84
TUPIES e 85
Maps and DiCtionariescooveeerrereeieenesieereseeee e 87
Example programs in GitHub...........cccocooviiiiiiniiiiiciee, 88

Classes and OOPccocviiiieiinine e 89
A Rectangle Class.........coveieriniiiinic e 89
INhEritanceccoviiiiiiiic 92
More useful Classes........coovviiriiieiieiiinie e 93
Deriving New Classescccverireeiierieiinie e 96
Public, protected and private inheritanceccoveeervenne. 97
Classes Within a Classccevveieiniienii i 98
Classes and headerscoveierenieienieeseee e 100
USIng Headerscovviieiiiieiieceeneseee e 103
The Main Programcccoceervirieniieiiee e 104
Summary of headers.........cccoovvviiiniiciince 105
Multiple INheritancecooveeiriiiieniiiee e 105
PolymorphiSmooviiiiiiiic e 107
Virtual FUNCtionsccooveoviineinine e 108

Pure Virtual FUNCHONS ...ttt nn e 109

Static class MEMDETS.........cccveiiiieiini s 111
Friend declarationscccocevueiienieeiieenie e 112
ConStaNnt ClaSSES......cvvvrereerriieeie e s 112
Example Programs...........cccoceviiiiniiiiienenee e 113
10. Pointers and MeMOTYcccoovrvererineenineeenesee s 115
Classes and destruCtOrS.oveeerereerereeieeseseesre e 116
When is the destructor called?..........ccocevininiiiiiininns 117
Other uses for destructors.........ovvviiieennineinen 118
Smart POINLETScccvveiieiiiiiiiiieiee st s 118
Example Code on GitHUbccoooveiiiiiiiicce 120
11. Using linked 1iStSccoviiiriiinieiiciieseeeeeseei 121
DEfINItIONS ...eeiviiiiiiiie e 121
Creating the listccoeiiieie e 123
Traversing the list........cccoceviiiiiiiine e 123
The 1eVerse 1LeTator.......ccvverireriieeieeieesiee e 125
Inserting a new cell in the chain...........c.ccocovviciiicnennn 125
The COPY CONSLIUCLOTe.vveuviriieiiiiesiee et 126
Is this trip really necessSary?cccooveieerieniienieseeseenieene 127
Deleting the COpY CONSIIUCLOT........ccvervirieeieriesieeieseeee e 128
SUMMATY .eevieieiee e e s 128
Example Codeccccvviiiiiiniiiie e 128
12. TemMPLates......oooveeieiieree e 129
Template funCtionscccereeieriiiienireee e 129
Class temMPlatescvrvreeriiere s 130
Class templates of Classes........ccovvvrvererienieininieennese e 132

| 2SI RS (=) 4 LS1 135

Example Codecocoovviiiiiiiiiiiiic e 135
13. Creating User INterfacesccocvrvreervnenieesesecneneeas 137
A wxPython example..........ccooveviiiiiinii 138
Strings in WXWIAZELS.......oviviriieiieiiesie e 140
Writing basic wxWidgets codeccoovrvriiiiinieninieenennenn 140
SUZETS vttt 142
Include Filesccoviiiiiiiiiiii 142
The BOX SIZET.....oiiiiiiiiiiciii 142
Splitting up the Main apP......ccocvevvvrerieereneee e 143
More on 1abelsccccviiiiiiiiic e 144
Entry fields and buttons...........cccocvrieeiienieniineceee e 145
Events in WXWIdELScoovvirieiiiiiiieneneee e 147
Adding two numbers togetherccocvvvverinieii e 149
The GridBag Sizer........ccoccoviiiiiiiiiieicee e 149
The Add and Clear buttonsccoceeieeiieniinienieeee 151
Command Buttons...........cccoeeiininieienieeeee e 152
IMBIIUS ...ttt 154
Shortcuts and acceleratorscccoeveveeieeneenienie e 156
Radio or check menuitemscocoveererienieneniecnenenn 157
Binding Menultemsccovvreiieienieie e 157
Dialog BOXES . ..oovieiieiiieiiie e 158
The File Dialog........cccocieiiiiiiiiiiieeieeese e 159
Installing WXWiId@etScccoririiiiriieniieee e 159
Example Programs on GitHub............cccoovvoiiiiciicninnn 160
REferencescovviiiiiiic i 161

14. Choices and LiStDOXES .. .ooveveveie e 163

RadioBUuttonsccoceiiiiiiiiiii 163
Reading the Radio buttons............ccocervrviiiienicnneeene 164
Responding to RadioButton clicks.........cccccvvviieiiiiiiviinnnnnn 165
Finding the calling objectccccviiiiieiiiiiicieee 167
LiStBOXES ..ttt 168
CheckLiStBOXES.viiviiiiiiiiiiiii et 170
The StateLister Application.........cccvevevviiiveeniiie e siee e 171
Using a Mediator Classccooveieeiieiieiie e 172
The CombOBOX ...ccvviiiiiiiniiiiiirit s 174
CRECKDOXES ...vviviiiiiiiiieieesiee sttt 175
CheckboX StYLES......ueiivieiiiiiiiiisie e 177
Displaying tables in a grid........cccccveerinieniinieniene e 178
Selecting Grid T€ZIONSeeververieeririeiie e 180
Other wxGrid featuresccovvveiiiieiis 182
The Tree Widget.......coovveiieiiiiieiieeeee e 182
MOVING ON ..ttt 183
Example programs on GitHub............ccooeeoiiiiiiiiicien 183
Part I1- Application Development.............cccoveririiiniieneenene 185
15. The Armadillo Math Libraryccccccoovvviiiniiniicnenns 187
Overview of Armadillo Classes..........ccoovevvererienineeienenn 187
IMAALTICES .ottt bbbt 188
Matrix methods.........coceiiiiiiiii 190
Matrix fUNCHONS ..vvevieiiiiiiiiie e 190
Decompositions, Inverses and Equation Solvers............. 191
Signal and Image Processing.........c.ccoovvevrivrivenienvcinnnnnn. 191

MatTiX tTANSPOSE ...veuvveviteenresieeieetesiee sttt b sre e e e e 191

The tranSPOSE.....uviirivieiiiiiiie ettt 192
The Fast Fourier transform..........cc.cceevvivniinnieninenie e 193
CUIVE fIHNG oo s 195
Installing and running Armadillo programs................c....... 197

Running the example programcccocvvvevervsienennens 197

Running new armadillo programscc.ceevrvrvenennnns 198
Example programs on GitHub...........cccccooiiiniinnn 198
References ... 198

16. Plotting in CH.ooveiiiciii e 201

Plotting using DrawLinescccccovvvreeierenienneneeneennenn 203
SCIPIOt .. 205
ROOT .o 207
The ROOT INterPretercovviveeveiirieeiesieeeesie e 208
Writing C++ code for ROOT..........ccoooiiiiiiiiiiiiee 211
Writing ROOT code for a C compileroocvenviveninnne 212
EITOT DATS ...ttt 213
Plotting multiple lines in ROOT..........ccccveviiviiiniiiciennnn 214
Example programs on GitHub............ccooeoiiiiiiicninnn 216
Referencesccoooeiieiiiici e 216

17. Databases in CHt.....cooceieiiiiiiicieicseee s 219
SQLIE .t 221

Downloading SQLIte.......c.ccooviriiiiiniiie i 221
SQLItESUAIO ..t 222
Programming SQLite in CH+ocovvveniiiienececeeen 223
Compiling using Visual Studio.......cccccvvvervninivenineniciene 223

Example C++ code to connect to SQLItevvvvvrvverirerennne 227

Building a database class structure...........cccocvvvviieeneennenne 229
The QUETY ODJECT ...vviieiiieiiieee e 230
The Results Classccovveriieiiiiineeeneeeee e 232
Using the SQLite Classesccoveiierierieriieiieiieeseesieenieens 232
Database TabIescccvivieeiirieeeieree e 233
Adding rows to a Table..........ccooviviieniiine e 236
Prepared QUETIESvvevviviiiiiiiie st 238
SUMMATY ...veiiiiie e e 242
Example programs on GitHub............ccocveiiniiiiiiienen 242
Referencesccovvviiiiiiicr e 242
18. Using the MySql database...........ccccooeervininniiiieennnne. 243
Installing MySQLcooviiiiiiieie e 243
Writing C++ to connect to MySQLcccovviiiiiiiieiennn 244
Debugging libraries for Connector CH++.........c.cccovviveninnnne 248
Creating C++ classes to connect to MySQLcccceevnnne. 248
Numeric types in MySQLccccooviiiiiinieieie e 251
MySQL QUETY 1eSUILS......ccviriieiiiiiiieriesieee e 251
Why does printing out a Value object work?................... 252
Creating the MySQL groceries databasecccovevevvennne. 253
Prepared Queries in MySQLccocoviiiiiiiiiiiicce 254
Table functions in Connector CH+ccoeovviiiininicinennenn, 256
Other approaches to prepared qUETIEScoveverrvrervernenne. 257
Example programs on GitHub............ccoceeiiiiiiiiicenn 258
SUMMATY ..o e 258
Referencesccovvviieiiiic i 258

19. Namespaces and Modulescccevvervininniisnieennnn 261

MOUIESoviriiiiiii 263
The module descriptor file.........coovvveiiiiniinieee e 264
Make the descriptor file an include file..........c.ccooeeiienee 265
Combining namespaces and modules............c.ccovceeriernennn. 265
Example code on GitHUbccooovvviiiiiiiiccce 267
Referencesccovvviieiiiic e 267
Part III -Design Patternscccoceviiriienienieseecec e 269
Notes on Object Oriented Approachesccccceevverveninne 269
Commonly used Patterns..........cooovvveiereninnenienesecee e 271
Referencesccovvviiiiiiicr e 271
20. Factory Patternsccccocvviiiiiiniic e 273
The Simple Factory Pattern..........c.cccoovvviinenieiinenie e 273
The Factory Method Patterncccoveveiinineninnnc e, 276
Example programs on GitHub...........cccccoiniiiiin 282
21. The Abstract Factory Patternccoocevvieiieieennene 284
A GardenMaker Factoryccceuvvierinenie e 284
The Plant class.........ccovviieiinieieeersee e 285
A Garden Class.......c.ccovvieeiiiiee 285
How the GUI WOTKS......cccoiieiiiicie e 287
Example program In GitHub ..., 289
22, AdAPLIS....cocieiieiie e 290
Moving Data between LiStS.........cccocveiieniiniiininiiicieenee 290
The Grid Adapter codeooveeiniiieniiiiie e 294
Class Adaptersccovvreeriienie e 296
The GridAdapter Class.........cooevverreerinne e 298

Finding the current rowccccceovviieninenie e 300

Object adapters and class adapterscccoeeeveerieiiieninennne. 301
Example Code on GitHUbccccooviiiiiiiiicc 301
23. The Bridge pattern.......cc.ceovrieieenineeneseee e 302
The Bridge......cvevvveiieiieiie e 304

The VISLISES ..eiueiiiiiiiic ittt 305
How to set up the Bridgeccoovevviiiieiinii e 307
Other VISLIStScovviiiiiiiiiicii 308
SUMMATY ...veiiiiie e e 310
Example programs on GitHub............ccocveiiniiiiiiienen 310
REfEreNCes ...oovvvviiiii i 310

Basic C++ Syntax 16

Basic C++ Syntax 17

Introduction

This book teaches you how to write programs in C++ and
contrasts them with programs you might have written in Python.
Since the syntax of the two languages are pretty similar, this
should be a pretty easy transition. We also discuss libraries that
you can use in place of Python’s tkinter, Numpy and MatPlotLib.

Why should you take up C++? Well, since C++ is a compiled
language, that compiled code will run a lot faster. And you can
compile your program to run on several different platforms
without requiring the user to install Python or any other
compiler.

The single major difference in C++ is that you enclose blocks of
code in braces ({})rather than simply indenting. This eliminates
those annoying Python “indentation error” messages that can
sometimes be hard to correct.

The other major difference is that you must end every statement
with a semicolon.

C++ is a strongly typed language and requires that you declare a
type for every variable. Thus, you can’t accidentally use the
same variable name to represent different kinds of numbers or
strings as you can in Python.

But since the syntax of C++ and Python are very similar, you
will be able to write C++ code right away. In fact, you will
recognize our early examples as being ones you could easily
have written in Python.

Years ago, when Dick Lam and I wrote our first book on C++
[1], it was still a pretty new concept, and we wrote the book
using examples right along as we became familiar with the
language.

Basic C++ Syntax 18

Today, C++ has grown enormously from those early days, and
not only has a lot of neat new tricks, but it has also grown closer
to Python. So, you will be pretty comfortable in C++ as we go
along.

C++ is a satisfying experience because your code will be clearly
structured and, of course, it will run a lot faster than the same
code in Python.

We start at the beginning and take you through the language,
adding on features in each chapter. And you will find the code
for every example in the GitHub repository.

While you can write C++ on any platform and using any number
of tools, we will concentrate on creating C++ programs on
Windows using the free Community edition of Microsoft Visual
Studio. But everything we write will run on all major platforms.

You might be wondering if with all the Al systems now available
whether you still need to write your own programs at all. Of
course, the answer is YES! You can use Al tools like CHAT-GPT
to help you find how to write programs and provide you with
examples, but you will get the best uses of those Al tools if you
know how to ask the right questions. And those questions come
from understanding the fundamentals of C++ programming. That
is the objective of this book.

How to use GitHub

All of the example programs in this book are available for you to
download from GitHub. Look at

jwcnmr/jameswcooper/PyCpp

In case you are unfamiliar with GitHub, it is a free software
repository managed by Microsoft for sharing code; anyone can
use it.

To get started, go to GitHub.com and click on Sign Up. You will
need to create a user ID and a password and submit an Email

Basic C++ Syntax 19

address for verification. Then you can search for any code
repository (such as jameswcooper) and download any code you
want. There is also a complete manual on that website. The
complete path to the examples in this book is

https://github.com/jwenmr/jameswcooper/tree/main/PyCpp.

If you are downloading a multifile project with both cpp and
include (.h) files, then when you create your Visual Studio
project, you should click on Header Files in the Solution
Explorer and add all the include files, and then click on Source
Files and add the .cpp files.

Reference

1. James W Cooper and Richard B Lam, 4 Jump Start
Course in C++ Programming, New York: Wiley-
Interscience, 1994.

https://github.com/jwcnmr/jameswcooper/tree/main/PyCpp

Basic C++ Syntax 20

Basic C++ Syntax 21

Book organization

This book is divided into three major sections: Learning C++,
Application Development and Design Patterns. While the
chapters are really a continuum, the latter chapters take up a
number of external packages you will want to use that are
analogous to ones in Python. The Design Pattern section shows
you useful techniques for writing more sophisticated programs.

PART | — Learning C++

e Chapter 1 introduces you to the syntax of the basic C++
language. Indentation is no longer required, but the
programing tools usually help you choose an indentation
style.

e Chapter 2 summarizes a number of the most popular
Integrated Development Environments (IDEs), and
makes some recommendations.

o Chapter 3 shows you how to write the equivalent of
print and input statements, and how to read and write
data from files.

o Chapter 4 takes you through arrays and more or less the
same sort of looping statements you learned in Python.

e Chapter 5 shows you how you can make decision in
C++, and you won’t be too surprised that they also are
pretty similar to Python and other languages.

e Chapter 6 introduces functions so you can group code
into useful units.

e Chapter 7 introduces pointers: really the first new
concept to you if you started in Python. They make it a
lot easier to keep from copying data all over the place
between functions

e Chapter 8 introduces sets, tuples and maps: all of which
should seem familiar to you.

e Chapter 9 brings you to classes, objects object-oriented
programming, which is pretty easy in C++, too.

Basic C++ Syntax 22

Chapter 10 explains how you can reserve and release
memory, how you create pointers to refer to it.

PART II-Application Development

Part Il

Chapter 11 shows you how you can use pointer to create
linked lists

Chapter 12 explains how templates expand the power of
C++ and why you are using them all the time without
knowing it.

Chapter 13 shows you how to create C++ program with
a graphical user interface, or GUI.

Chapter 14 continues from Chapter 13 explaining
Listboxes and choice boxes in your GUI.

Chapter 15 introduces the Armadillo math library
Chapter 16 introduces several plotting libraries you can
use.

Chapter 17 introduces databases and SQLite

Chapter 18 shows you how you can build the same
interface to MySQL, an industrial strength client server
database.

Chapter 19 explains how you can put your code into
modules.

— Design patterns

Chapters 20-23 summarize a few important Design
Patterns used in creating more significant programs.
o Chapter 20 summarizes the Simple Factory and

Factory Method patterns.

o Chapter 21 illustrates the Abstract Factory
Pattern

o Chapter 22 shows how to use the Adapter
Pattern

o Chapter 23 shows you how to use Bridge
Pattern.

Basic C++ Syntax 23

1. Basic C++ Syntax

If you know Python, you are a long way towards learning C++
already. They have similar syntax, functions and a class structure
you will understand pretty quickly. So, in this introductory
chapter, we’ll concentrate on the differences between Python and
C++.

Of course, the main difference is that C++ runs much faster since
it is compiled directly into machine code. And C++ has a great
deal more flexibility in the ways you can build programs. But the
syntax is strikingly similar.

Variables

Variable names can be made up of upper and lowercase
characters, along with numbers and underscores. And like
Python, variable names can start with an underscore, although in
C++ it doesn’t signify any special properties. Like Python, case
is significant, so Apples and apples are different variables. And
like Python, variable names cannot contain spaces or any other
special characters.

Statements

The layout of code in C++ is very flexible. You can write one or
more statements on a single line or spanning multiple lines:
whichever is clearest to the reader. You terminate states in C++
with a semicolon character rather than the newline character
Python uses. There is no requirement for indenting blocks of
code, but it does make programs more readable.

apples = 5;
oranges = 5;

Or, you could write the same code on a single line:

apples = 5; oranges = 5;

Basic C++ Syntax 24

And like Python, if the variables are to have the same value, you
could also write

apples = oranges = 5;

Spacing between operators is optional, just as in Python, so you
could (inadvisably) write:

apples=oranges=5;

Declaring variable types

If you were to put these two statements into a little C++
program, however, they wouldn’t actually work! We’ve left out
the most significant difference between Python and C++. The
C++ language is strongly typed and you must declare the type of
every variable when you first use it. So, the complete syntax for
declaring these variables is

int apples = 5;
int oranges = 5;

The convention in C++ is to declare the variable right where you
use it, but you could also break that up into two declarations like
this:

int apples, oranges;

// and later:
apples = 5;
oranges = 5;

Note that here we have just introduced the single line comment,
It starts with two slashes and continues to the end of the line.
You can also create multiple line comments using the /* and */
delimiters:

Basic C++ Syntax 25

/* we declare apples and oranges here,
and pass the values later */

int apples, oranges;

The whole point of declaring the type of each variable is so the
compiler can generate the most efficient code for that data type.
Thus, C++ is a strongly typed language, where each variable
must have a type declared. By contrast, Python is a weakly
typed language where data types are resolved at run time, not
compile time.

In Python, you could write

apple = "fruit" #and later write
apple 5

and both would be correct. The type of apple would simply
change for the new declaration. Doing this in C++:

string apple = "fruit";
//and later
apple = 5; // would lead to a compiler error message

Note that when we create strings of characters, they are enclosed
in double quotes(""). The single quote (') is reserved for
characters:

char ¢ = 'a';

and can only hold a single character.

Data types in C++

The data types you use in C++ are pretty similar to those in
Python as shown in Table 1-1.

Basic C++ Syntax 26

int Integer 2 or 4
bytes

float 4 byte floating | 7 digits of 10126 to 10
point precision

double | 8 byte floating | 15 digits of 1071023 19 101024
point precision

char 1 byte one character Use single

guotes ‘a’

bool Boolean, 1 byte | true or false

string | array of Use double
characters guotes "apple"

Table 1-1 - Data types in C++

Python’s float type is equivalent to C++’s double type: Python
does not have a 4 byte floating point type. In fact, these days,
most C++ programmers use the double type exclusively, since
memory is seldom a limitation, and the greater precision is

useful.

Character Constants

C++ follows the C convention that the “whitespace characters”
can be represented by preceding special characters with a
backslash. Since the backslash itself is thus a special character, it

can be represented by using a double backslash.

"\n' newline (line feed)

'\r'

carriage return

"\t tab character
"\b' backspace
"\EY form feed
"\O! null character
AT double quote
A single quote
AN backslash

Basic C++ Syntax 27

The size_t type

You will often see for loops using an index variable of type
size_t instead of type int. The size t type is an unsigned integer
long enough to hold the largest number that the sizeof function
can return, and in modern systems it is usually am unsigned long
int, usually 64-bit. However, this can vary with the platform and
size t is more general for manipulating indices that could
sometimes become very large. We will use it beginning in
Chapter 6.

Arithmetic Operations

Like most languages, you have the choice of the usual
operations:

+ Add

- Subtract
* Multiply
/ Divide
% Modulo

(the remainder after division)

Unlike Python, C++ does not promote integers to floats when
you specify division. So

9/ 4
does not result in 2.25, but just 2. The remainder is discarded. If

you want the integer remainder you can get it from the modulo
operator:

9% 4
will result in a result of 1.
Doubles and floats do not convert to integers, so

50/2
will give 2.5.

Basic C++ Syntax 28

Converting between numeric types

You can always convert from a narrower type to a wider type just
using the equals sign, so

double y = 12;
so an integer is always promoted to a float or double.

If you want to convert to a narrower type from a wider type you
should “cast” the double to an integer, for example.

double x = 2.34;
int k = (int)x;

If you leave out that cast, the compiler will give you a warning;:

double y = 12;
float f = y; //compiler warning
float f1 = (float)y; //no warning

Arithmetic shortcuts

Instead of writing:

k =k + 1;

you can compress that, just as in Python, to

k += 1;

But in C++, you can go farther are just write:
k++; // Add 1 to k after you use it

And just to be more elaborate, you can also write
++k; // Add 1 to k before you use it

Of course, you have to be a little careful with this one in writing
longer expressions, but it can be very useful.

Basic C++ Syntax 29

A complete program

Now, let’s look at our first complete program:

#include <iostream>
using namespace std;

//Add up the amount of fruit you have
int main()

{
int apples = 5;
int oranges = 7;
int fruits = apples + oranges;

// print out the sum
cout << "Total fruit " << fruits << endl;
return 0;

}

Programs in C++ generally begin with a main function as we
show here. Here are some basic observations:

1. Everything in that main function is enclosed in a pair of
braces. Indentation may be more readable but is not
required.

2. Single line comments begin with a pair of slashes.

3. The #include statement specifies the iostream library,
much like Python’s import statement.

4. The using namespace std directive allows you to avoid
typing the std:: prefix before the cout and endl
functions.

5. Output is created using the cout function (which stands
for “console out.” It is commonly pronounced “see out,”
but many people read it to themselves as “kout.”

6. The main function has a return value of zero if there are
no errors. If you return any other number, the operating
system will tell you there has been an error.

7. As you might expect, the output of this program is

Total fruit 12

Basic C++ Syntax 30

Bitwise operators

The bitwise operators are intended to do ANDs and ORs and
complements on integers to add or mask out individual bits.

& bitwise And
| bitwise Or
8 bitwise exclusive Or
~ one’s complement
>> n right shift n places
<< n left shift n places

Since bit manipulation may be less familiar to you, here are a
few examples. The whole purpose of setting specific bits in a
byte or integer is really so you can use that number to set some
sort of hardware register or other sort of bitmap.

The bitwise And is sometimes called a masking function. It
returns a number that has bits set to one are that are set in both of
the input values. So, if we start with

int x = 7; // 0111, and
int z = 10; // 1010, then
int val = x & z; // 00109,

// since only one bit is set in both

The Or operator sets bits in the result that are set in either value
val = x | z; // 1111 is the result

The complement operator switches all the ones and zeroes in the
number.

val = ~z; // 11110101 - to 8 bits
// same as -z-1, or -1011

The left and right shift operators shift the bits to the left and
right, filling with zeroes.

val = x << 1; // left shift 1 place 1110

Basic C++ Syntax 31

val = x >> 1; // right shift 1 place 0011

Types of Integers

The names and lengths of various integer types parallels the
history of computer, and microprocessor, development. At one
time, integers were 16 bits, but we have pretty much settled on
32 bits (4 bytes) for integers, and 16 bits (2 bytes) for short or
short int types. Long or long int may be 4 or 8§ bytes. The
numeric type list is shown in Table 1-2.

char 1 byte -usually for characters
short 2 byte

int 4 bytes

long 4 or 8 bytes

long long 8 bytes

Table 1-2 — Numeric types in C++

In addition, any of these types may be unsigned, meaning that
they cannot be negative. This also frees the sign bit of signed
integer to allow one more bit of data. This is much less
significant today than it was when we were trying to keep
memory usage compact in the “olden days.”

Positions of braces

In the example above, you see both the opening and closing
braces on separate lines like this:

int main()

{

It is also quite common to put the first brace at the end of the
previous line. This saves space on the screen or page but is still
very readable:

Basic C++ Syntax 32

int main() {

We’ll use that second convention throughout this book to
improve layout on the printed page.

The auto keyword

Since C++ version 11, you have been able to write:

double x = 12.3;
int k = 15;
auto quot = x/k;

The auto specifier tells the compiler to deduce the type from the
expression. While the result is obvious here, it may not be so
clear when you have complex expressions involving pointers to
data as we will see in Chapter 7.

This only works when the compiler can deduce the actual type.
Otherwise you will get an error message.

Now that we’ve seen a really simple C++ program, we’ll
consider some common development environments in the next
chapter.

Example code
e Examplel.cpp -- simple code fragments from this
chapter
o Addfruits.cpp — adds apples and blueberries

References

If you or one of your colleagues needs a basic tutorial on C++,
the free one on the w3schools site is quite good. Look at
https://www.w3schools.com/CPP/default.asp

C++ Development Systems 33

2. C++ Development Systems

If you are going to write C++ programs, you need a code editor
and compiler. These are usually bundled together as IDEs
(integrated Development Environments). C++ has new version
releases about ever 2-3 years. The current releases most
compilers support are 11, 14, 17, and 20, corresponding to the
years 2011 through 2020. The current version is 2023. Here we
profile a few IDEs although there are many more.

If you are just starting out, you can’t go wrong with a free on-
line system like OnlineGDB.

! O @& https//vwww.onlinegdb.com © % ® 5% o » 0O ‘

i Login: Troupers —.. B Bankwell | Online 8... {§V Troupers Light Ope. @ AmazonSmile: ¥ Food Science Instit.. @ Twitter/ Home [B) Home - PubMed -

bnlineGDB beta Mailchimp — Our creative tools, marketing automations and recommendations work together to help you create better results

maln.cpp
1 #include <iostream>
using namespace std;

me, jwenmr &
New Project

Projects //Add up the amount of fruit you have
= int main() {

int apples = 5;

int oranges = 7;

int fruits = apples + oranges;

STOOM new

Programming

BNAV A WN

10 // print out the sum

11 cout << "Total fruit " << fruits << endl;
12 return o;

13}

Standard Input: ® Interactive Console O Text
+ Blog * Terms of Use : A
Blog * Terms of Use Ads by Go

GDB Tutorial » Credits *

ogle

Not only will Onlinegdb work as a C++ development system, it
also supports development in C, Java, Python 3, PHP, C#, VB,
HTML/Javascript/CSS, Ruby, Perl, Pascal and FORTRAN. In
fact it supports versions of C++ from 14 through 20 as well.

It runs in your browser and compiles and runs code very quickly.
It is ideal for beginners, because you don’t have to install
anything to get started. You do have to create a free account
where it can store your programs, And, as you can see, it has a

C++ Development Systems 34

number of advertisements along the margins to support the
project.

You can create programs containing several modules and include
files if you read the instructions, but this is not its strength.

Visual Studio

You can download Microsoft’s Visual Studio Community Edition
from Microsoft for free. And, frankly, it is the easiest to use and
most intuitive of all the IDEs we’ve looked at.

Wk th Yo G Buee bl D T A Tk B Mkow e . 3 ° o

<] P tocal Windows Debugger - D>

You can use Visual Studio as a development system for C++, C,
Python and Visual Basic by simply selecting the type of project
you want to build. Creating multi-file projects is pretty easy and
you can build and debug programs without much trouble. It is
clearly the king of all the IDEs.

CodeBlocks

CodeBlocks is a free download which can either use the gcc
compiler or the compiler from Visual Studio. You can build
multiple file projects in it and it is recommended in that
w3schools tutorial we mentioned. However, we found almost
everything we tried to do less than obvious. You need to be
careful to select the correct download: the one containing the gcc

C++ Development Systems 35

debugger is the one you probably want. If you pick one without
that debugger, you will get confusing error messages.

¥ Boxh - Code:Blocks 20.03 - a X
File Edit View Search Project Build Debug Fortran wxSmith Tools Tools+ Plugins DoxyBlocks Settings Help

DR &Y Y EH QAR &> S S8 Dpebug ~ 2
> MREBR FYr<0F) HJop D o o= = £ ofin x
I LL 6y NBED

CAE=EE OO Qa SC

 Mansgement > |

' Projects Files " #ifndef BOX_H_INCLUDED
OWorkspace #define BOX_H_TNCLUDED
= 180:«5
~ & Sources
Box.cpp

=
>
3

‘ class Box |
main.cpj . N
private:
[Headers int width, height;
Boxh 4 public:
10 Box(int w, int h) |
11 int getareal();
12 H
13 #endif // BOX_H_I“CLU'DED
14

L T R

< >

Logs & others x

' # Build messages 7 CppCheck/Vera++ 7 CppCheck/Vera++ messages ? Cscope L¥Debugger *
File Li... Message

< >

(C/C++ Windows (CR+LF) WINDOWS-1252 Line 10, Col 23, Pos 132 Insert Read/Write default

Most IDEs come with several themes which select compatible
syntax highlight schemes and backgrounds, but in CodeBlocks,
you have to adjust each color yourself. It took quite a long time
before we found a setting that would make a decent screen shot.
In fact, while the system works quite well, it is not all that
intuitive.

ClLion

CLion is made by JetBrains, the same company that makes the
popular PyCharm IDE for Python. While there is a highly
popular free Community Edition for PyCharm, CLion is only
free for 30 days, and then it costs $200 for the first year and a
decreasing annual price thereafter.

Nonetheless, it has the advantage of fast startup and compilation
that makes it ideal to try out new ideas before integrating them

C++ Development Systems 36

into larger project on Visual Studio. The IDE is fast and obvious
for single file projects and takes only a little time to learn to use
for multifile projects.

File Edit View Navigate Code Refactor Build Run Tools VCS Window Help Boxes - maincpp - [a} X
o P
Boxes L, main.cpp B A Boxes|Debug ~ B % G -~ & Q
§ Project = @ & @ — A CMakeliststxt 2, maincpp il Boch & Boxepp =
""" #include <lostreems ?
& v cmake buid-debug include <iostream> v g
CMakeFiles z
Testing using namespace std;
s Box.cpp #include "cmake-build-debug/Box.h"
i Boxh
& Boxescbp » int main()
s Boxes.exe {
> Boxesilk Y.
" Box b(w: 5, h 4);
7 B
" cout << "Area: "<< b.getArea() << endl;
A cmake install.cmake
% CMakeCache txt retuen B;
Makefile }
A CMakelists bt |
5 main.cpp
Il External Libraries
® Scratches and Consoles
Messages: Build 0 —
2 s===zszsssszsss ===[Build | Boxes | Debug]===
& :\Program Files\JetBrains\CLion 2021.2\bin\cmake\win\bin\cmake.exe [Eild C:\Users\James\CLionProjects\Boxes\cmake-
L [108%] Built target Boxes
£ S Build finished
* »
B Run = TODO @ Problems BM Terminal A CMake 2= Python Packages = & Messages Q) Event Log
ID)_Build finished in 2 sec, 266 ms (14 minutes ago) 121 LF UTF-B 4spaces Co+ Y

Other IDE systems

There are at least a dozen IDEs you might consider, reviewed by
Dori Esterman in his article “The Best C++ IDEs of 2022.” They
include Eclipse, Codellite, NetBeans, DevC++, C++ Builder and
Xcode. Any of the above will get you started and you can
explore the others at your leisure.

References

1. On Line GDB: https://www.onlinegdb.com/

Visual Studio: https://visualstudio.microsoft.com/vs/
CodeBlocks: https://www.codeblocks.org/

CLion: https://www.jetbrains.com/clion/

Best IDEs: https://www.incredibuild.com/blog/best-c-
ides

Ealb i

v

https://www.onlinegdb.com/
https://visualstudio.microsoft.com/vs/
https://www.jetbrains.com/clion/

Input and Output 37

3. Input and Output

In Python we used the print and input statements to write and
read from the console. These are pretty easy to use unless you
need to format the output to a certain number of places. Then
you get into formatting. In C++, you use streams to do the same
thing.. Whether the stream comes from the console or a file, the
syntax is exactly the same, making data handling much simpler.

Output using cout
In Chapter 1, our simple illustration used the cout object to send
a stream of characters to the console:

cout << fruit;

This syntax uses the less-than signs as a left arrow, meaning to
send the string value of the variable fruit to the console output.
As we noted previously the cout object is supposed to be
pronounced C-out (or “see out”) meaning “console out,” but to
save syllables, some people just say “kout.”

However, this leaves the cursor at the end of the line. To print a
line and move to the next line, using the endl object, which is
essentially a newline character.

cout << fruit << endl;

These cout and endl symbols are part of the std namespace,
which is why our example program begins with:

using namespace std;

If you decide not to load that huge namespace of symbols into
your program, you can also write the statements as:

std::cout << fruit << std::endl;

Input and Output 38

Input using cin

Likewise, you can read characters in from the keyboard using the
cin object followed by two greater-than signs, representing a
right arrow:

int apples;
cout << “Enter number of apples: “;
cin >> apples;

So, our complete program, including the using declaration is:

#tinclude <iostream>
using namespace std;

//Add up the amount of fruit you have
int main() {
int apples, oranges;

//get numbers of apples and oranges from keyboard

cout << "Enter number of apples :";
cin >> apples;
cout << "Enter number of oranges :";
cin >> oranges;

//add them together
int fruits = apples + oranges;

// print out the sum
cout << "Total fruit " << fruits << endl;
return 0;

}

Note that unlike Python’s input statement, the C++ cin method
converts the input string to the specified simple types
automatically. You can read into strings, doubles, floats or chars
without any special coding.

Reading in whole lines

The cin method only reads up to the first whitespace, which
might be a space or a Return. If you want to read in a whole line,
spaces and all, use the cin.getline() method. It reads characters
into a char array but you can easily convert that to a string.

Input and Output 39

char name[100]; //create a char array

cout << "Enter name: ";
cin.getline(name, 100); //read in a line
string nm(name); //convert to a string

The std namespace

The disadvantage of including the entire std namespace in any
C++ program of substantial size is that you might inadvertently
create a variable having the same name as one of the many
hundreds of keywords in that namespace. But clearly prefixing
every input or output method with “std::” is a significant pain.

There are two solutions to this collision problem. One is to
simply create using statements for the symbols you need:

using std::cout;
using std::cin;
using std::endl;

The other solution is to insert the “using namespace std” inside a
single function or class, so it is only active in a small, localized
code segment.

Formatting in Python
If you write the simple Python code:

x = 4.5/3.22
print(x)

Python will print out:

1.3975155279503104

which presents 16 figures, most of which are meaningless. The
quotient of these two numbers is irrational, producing an infinite
“run-on” decimal result. But such a calculation has at most 2 or 3
significant figures.

Input and Output 40

But Python doesn’t know this. In order to reduce this to just a
few significant digits, you can use the popular f-string
formatting;:

print(f'{x:3.3f}")

which produces

1.398

And if you reduce that to two places

print(f'{x:3.2f}")

you get

1.40

which, honestly is about the level of precision you should be
expecting from 2-digit numbers.

Formatting in C++
The C++ cout object handles this a little differently, but there are
some similarities.

If you just print out the result of the same operation:

double x = 4.5/ 3.22;
cout << x << endl;

C++ prints out:

1.39752

rather than the long irrational number string you get from
Python. Briefly, the cout operation has a default width of 6
characters, excluding the decimal point, which is much more
friendly.

Input and Output 41

But if you want to format that number to fewer places, you use
the powerful format method. For each number you want to
format, you create a formatting expression inside a pair of
braces. The first character is always a colon. For fixed point
numbers like floats, you can specify a width number to the left of
a decimal point and the number of digits of precision to the right
of the decimal point.

You must include

import <format>
using std::format;

in your code, and you must be using C++ version 20 or more.

You can have any number of formatted numbers in a single
format statement. For each number you want to format, you
create a formatting expression inside a pair of braces. The first
character is always a colon. For fixed point numbers like floats,
you can specify a width number to the left of a decimal point and
the number of digits of precision to the right of the decimal
point.

Note that the formatting is enclosed in braces, and a list of those
variables comes after all those format descriptors and is outside
the quotes:

cout << format ("Both: {:.3f} {:.2f}", x, z);

which will, of course, produce:

Both: 1.398 0.30

double x = 4.5/ 3.22;
cout << format ("quotient is: {:.2}", x) <<endl;

The result is

quotient is: 1.4

Input and Output 42
because the format says a total of 2 places. If you want two
decimal places, you add an “f” for the float data type:

cout << format ("quotient is: {:.2f}", x)
<<endl;

This produces

quotient is: 1.40

You can also fold that “endl” into the format statement by using
the character symbol for a newline:

cout << format ("quotient is: {:.2f} \n", x);

Symbols in format function
Format has so many options that it is almost a grammar of its
own. The main symbols you might use are shown in Table 3-1.

<A> Left, center and right justify

+ Shows the + or — sign

An alternate representation
for hex and binary

W. Width if left of decimal point

p Precision (floats) right of
decimal point

fxbeg | Fixed point, hex, binary,
scientific and general
formatting

X BE G | Same as x b e g except any
letters are capitalized

Table 3-1 -Formatting characters

The argument to the left of the decimal defines the width of the
field. So the number is printed with leading spaces in f, e or g
format:

cout << format ("quotient is: {:10.2f} \n", x);

Input and Output 43

results in:

quotient is: 1.40

The format library picks suitable defaults for each type if you
leave out any specifiers. Here we see the default, scientific
notation and 12 decimal places illustrated:

double weight = 6250.444;

cout << format (
"weight = {} {:.12e} {:.12f}\n",
weight, weight, weight);

resulting int:

weight = 6250.444 6.250444000000e+03 6250.444000000000

Hexadecimal (base-16) and binary are convenient ways to print
out the bit pattern of variable when they are used as flags. This
only works on integers, however. Here we see x and X formats
ans well as the alternate representation of hex and finally of
binary:
int vy = 9127;
cout << format

("y= {:8x} {:8X} {:#8x} {:b} \n",

Yo Yr Yo Y)i

y= 23a7 23A7 0x23a710001110100111

Alignment and fill formatting

You can align integers and strings inside a wider field using the
alignment characters (<, *, and >), which align the values to the
left, center or right. The alignment character must come right
after the colon, unless you want to fill the field with something
other than a space. In that case the grammar is “:*<” where the
field gets filled with asterisks.

Input and Output 44

Here we see these alignment and fills illustrated for an integer
and a string:

int k =12;
int 7 = 20;
string word = "frazzle";

cout << format (
"k and j= {:3} {:2} {}\n",
k, j, word);
cout << format (
"k and j= {:<3} {:**12} {:>9} \n",
k, j, word);

The result show both the unaligned and aligned values:

k and j= 12 20 frazzle
k and j= 12 ***¥*¥2@¥****x fpazzle

Error Handling in formatting

The format library is not at all forgiving of errors in the order of
the symbols or the types you try to format. If you get the
symbols in the wrong order or try to print a string or integer as a
float, for example, you will get a runtime error rather than a
compile time error. This can be annoying, at least. For this
reason, you probably should try the formatting you plan to use
on small programs before using it in a larger project.

It is possible to catch the exception that the format object throws
and print out an error message:

//this one contains an error and will crash:

try {
cout << "trying to fail \n";
cout << format("y= {:8.2f}", y);
}

catch (format_error& e) {
cout << e.what() << endl;

}

In the above example, the format function is asked to print out a
floating point value, the y is an integer. The error that gets
printed is pretty helpful:

Input and Output 45

Precision not allowed for this argument type.

File handling

Files in C++ are just different streams. You can read and write to
and from them almost as easily as from the console. If you are
reading a file, using the ifstream object and if you are writing a
file, use the ofstream object.

In this first simple program, we read from the file “states.txt”
which we use extensively in later chapters. It contains all 50 U.S.
states, their abbreviations, capitals and populations.

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main()

{
const string FILENAME = "states.txt";
ifstream txtFile(FILENAME); //open the file
if (txtFile.is_open()) { //if it is open

string line;
while (getline(txtFile, line)) { //line at a time
cout << line << endl; //print out line

}
txtFile.close(); //close the file

Note that we open the file states.txt and read from it a line at a
time. This is the first program where we use braces to set off
blocks of code inside the larger program. We also indent the code
to make it more readable, but that is not required by the C++
compiler, but the braces are.

Input and Output 46

In this second example we read from one file and write into
another, named “mystates.txt.”

#include <iostream>
#include <fstream>
#include <string>

using namespace std;

int main() {
const string FILENAME = "states.txt";
const string OUTFILE = "mystates.txt";

ifstream txtFile(FILENAME); //open input file
ofstream outFile(OUTFILE); //open output file

//if both are open
if (txtFile.is_open() && outFile.is_open()) {
string line;
while (getline(txtFile, line)) { //line at a time

cout << line << endl; //print each line
outFile << line << endl; //write to file

}

txtFile.close(); //close both files

outFile.close();

¥
}

These examples use the while loop, which is pretty much like the
one in Python, and an if statement. We’ll cover them in detail in
the next two chapters.

Binary files

Writing and reading binary files is even simpler. You either write
them a byte at a time, or an entire dataset at one. The main
restriction is that you have to make the compiler believe that you
writing an array of bytes, by casting the data you are actually
writing into a pointer to an array of char.

In this example we create an array of 7 doubles and write them
to a file all at once:

Input and Output 47

#include <iostream>
#include <fstream>
using namespace std;

int main() {

double temps[] = {22.3,35.7,44.8,55.2,61.6,73.8,89.3};

//write entire file at once
ofstream outfile;
outfile.open("temps.dat",
ios::binary | ios::out);
outfile.write((const char*)&temps,
sizeof(temps));
outfile.close();

The resulting file,”temps.dat” is 56 bytes long or 8 x 7.

You can also write the data one data element at a time with a
simple for loop:

//write a byte at a time
outfile.open("tempsbl.dat", ios::binary |ios::out);
for (int i=0; i< size(temps); i++){
outfile.write((const char*)&temps[i],
Sizeof(temps[i]));

outfile.close();

The file “tempsb1.dat” is exactly the same as the “temps.dat”
file.

Reading a binary file
Here we create an empty 7 element double array and cast it in a
character array

double newtemps[7]; //create empty array
ifstream infile;

// read in data all at once
infile.open("tempsbil.dat", ios::binary | ios::in);

// reads 56 bytes
infile.read((char*)&newtemps, sizeof(newtemps));

Input and Output 48

infile.close();

Example files on GitHub

e Addfruits.cpp — add apples and blueberries
e Filesl.cpp — reads a text file

o Filesout.cpp — writes a text file

e Fmrs.cpp — examples of formatting

e wbin.cpp — writes and read binary

References

1. https://www.geeksforgeeks.org/using-namespace-std-
considered-bad-practice/

Loops, Arrays and Strings 49

4. Loops, Arrays and Strings

The C++ array type is analogous to the Python List. But in C++,
everything has a type, so C++ arrays must be made up of
elements of the same type: integers, doubles, floats and strings.
Of course, we will soon see that you can make an array of class
objects as well.

In Python, a List is dynamic: you can create it and still append
new values of any type later. In C++, however, an array has a
fixed size and a fixed type. Once you create it, it remains that
size and type. For example:

//create an array of Integers
int x[] = {2, 4, 5, 7, 9};

Note that you declare x as an array by including the empty
brackets. In this case, the data are then enclosed in braces. After
this statement, x will always be a 5-member array of integers.
You can access array members much as in Python by using
indexes in brackets.

cout << x[3];

This prints out the 4™ member, “7,” since all arrays begin with an
index of 0, just as in Python.

Of course, you can also create an array and then fill it within
your program. Here we create a 10 member array and use a for
loop to place numbers in it, starting with 12, and adding 2 to the
number each time.

int y[10];
int aval = 12;

Loops, Arrays and Strings 50

// fill array with numbers starting at 12
// and incrementing by 2
for (int i=0; i<10; i++){

y[i] = aval;

aval += 2;

}

Then you can print them out just as easily.

//print out final array
for (int i=0; i<10; i++) {

cout << y[i] <« H

}

cout <<endl;

giving the result:

12 14 16 18 20 22 24 26 28 30

Two-dimensional arrays

You can represent a 2- dimensional array by just enclosing
indices in two successive brackets. Here we create a little 2
dimensional 3 x 4 matrix:

double coords[3][4] {
{3.4, 3.4, 5.5, 2.1},
{2.2, 1.9, 1.2, 1.0},
{2.7, 3.4, 4.4, 4.7}
¥
Then, if you want to access the contents of that array, you refer
to each element using the same two brackets. This example

prints out the third column:

for (int j=0; j<3; j++) {
cout<< coords[j][2] << ™ ";
}

The result is

5.5 1.2 4.4

Loops, Arrays and Strings 51

The for loop

You can see from the above examples that you can use the for
loop to step through an array. The start and end positions are
selectable, and you can adjust the “stride” to any increment you
want: you are not limited to 1. And you are not limited to
integers:

double tval[1l0];

int i=0;
for (double tmp =42; tmp < 142; tmp +=10.0) {
tval[i++] = tmp;

}

In the above example, we are moving through a set of double
precision values starting at 42 and stopping just before the sum
reaches 142, with the for loop adding 10.0 each time. The actual
array index where we store these values is incremented in the
assignment statement just after it is used.

This is all quite different than the Python for loop which really
only runs sequentially through an iterator.

The range based for loop
There is a version of C++ for that does that too, and it is
convenient and readable. It’s called the range based for loop.

for (double a: tval) {
cout << a <" ",

}

It has the form

for (type variable: array_name) {
operate on variable

}

In this approach, you must access the array sequentially: there is
no stride option.

Loops, Arrays and Strings 52

The while loops

There are two while loops available in C++;

while cond {
statements

}
And

do {
statements
} while cond;

Note that the while loop may not be executed at all if the
condition is false to start with, and the do while loop will
always be executed at least once.

For example,

i=209;
while (i < size(tval)) {
cout << tval[i++] << " ";
}
may or may not be executed at all and
i=0;
do {
cout << tval[i++] << " ";

} while (i < size(tval));

will always be executed once.

Vectors

The vector is much like the Python List. It is a variable length
array of any type that you can add to, change or subtract from at
any time. The only difference is that in C++, the vector is
strongly typed and the type of values must be declared. Inserting
any other type of value is an error.

Somewhat awkwardly, the method for adding values to the end
of a vector list is named push_back.

Loops, Arrays and Strings 53

#include <iostream>
#include <vector>
using namespace std;

int main() {
vector <double> vdata; //create a new vector
vdata.push_back(42.0); //add values to the end
vdata.push_back(63.2);
vdata.push_back(77.1);

Of course, you could also declare the vector contents in a single
statement:

vector <double> vdatl {42.0, 63.2, 77.1};

You can access any element of a vector just as if it were an array:

//print out 2nd and 3rd values
cout <<vdata[l] << " " << vdata[2] << endl;

Like Python, you can also pop values off the end of the vector
list.

vdata.pop_back(); //remove last element

But, unlike Python, that value is lost. To get the last value and
remove it takes two steps. First save that last value, and then
shorten the vector by one:

double last = vdata.back(); //get the last value
vdata.pop_back(); //remove it

You can, in fact, insert a new value anywhere in a vector. The
trick is to get the iterator that points to the first element, and use
it to insert. In this example, we insert a new value at the first
position.

//get the iterator pointing to the first element
vector<double>::iterator it = vdata.begin();
//and insert a new value just before it

it = vdata.insert (it , 200.4);

Loops, Arrays and Strings 54

Then you can look at the new vector in the usual way using a
range-based loop:

for (double a: vdata) {

cout << a <« N

}

Here is the result. Remember we also removed the last value just
above.

200.4 42 63.2

If you create an empty vector and then add a bunch of values to
it, you are asking the vector to reallocate memory every time,
and this can be a slow process. It is better to start by creating a
vector with a default dimension:

//create a new vector and reserve 5 places
vector <double> vdata2(5);

This works even if you only use three places. The size of the
vector is 3 but the capacity is at least 5. If you create the vector
size in advance, you must access the data by its index. Using
push_back will add data to the end.

Vector Methods

Table 4-1 shows most of the useful vector methods you might
use.

Begin Return iterator to first element

end Return iterator to end

size Return vector size

max_size Return maximum size

empty Return true if the vector is empty

resize Resize the vector

front Access first element

back Access last element

assign Assign new content replacing current
values and size

push_back Add value to end of vector

Loops, Arrays and Strings 55

pop_back Remove last value

insert Insert elements

swap Swap contents of two vectors
erase Remove one element of the vector

Table 4-1 - Vector methods

Strings

Strings in C++ are much more flexible than in Python. They are
not immutable: you can change characters and add or remove
characters much as you can with vectors. In fact, you can access
any character using brackets and an index, just as you did with
arrays and vectors. The string object is not an integral part of the
C++ language, but it was added as a standalone class in C++ 98.
Before that time C++ just used C strings which were arrays of
char terminated with a null character. You use the string class
much as you did in Python.

So, as you have seen, you can create a string

string a = "apple"; //create a string
string b("blueberry"); //create another string

and access characters like this:

//print out the 3rd character of a and the 4th of b
cout<< a[2] << b[3] <<endl;

Which prints out

pe

Note that an individual element of a string is a char, not a string
of length one.

You can also use the +-sign to combine strings together:

string fruits = a + " " + b;
cout << fruits << endl;

which, of course prints out the combined string stored in fruits.

Loops, Arrays and Strings 56
apple blueberry

You can also replace characters and insert characters since these
strings are not immutable. We change “blueberry” to
“blackberry” by changing the ‘v’ and ‘e’ to ‘a’ and ‘k’ and then
inserting a ‘c’.

//change blueberry to blackberry

fruits[8] = 'a'; fruits[9]="k';

fruits.insert(9,"c");
cout << fruits << endl;

Note that the insert method takes a string, not a character, so you
can insert whole strings anywhere you want to. The string class
also has the same push_back method you find in the vector
class, but note that you can only add single characters with it ,
not strings, so insert is preferable.

Reversing a string

Much is made of reversing a string in Python articles because the
articles then teach you the somewhat baroque grammar of string
slicing. And since strings in Python are immutable, you always
have to create a new reversed string output variable.

In C++ this is much simpler. Since you can switch the characters
one at a time, you can do the reversal like this:

fruits = a +
string revString

+ b;
= fruits; //create the output variable

//and copy one from the front to the other from the back
for(int i = @, j = fruits.length()-1;
i < fruits.length(); i++, j--) {
revString[j] = fruits[i];
}

Note that we also illustrate the great power of the for loop. You
can initialize more than one starting variable and increment or
decrement more than one variable.

Loops, Arrays and Strings 57

You can also use the built-in reverse function to reverse a string
(or a vector) in place:

reverse(fruits.begin(), fruits.end());

This works because the string’s begin() and end() methods return
iterators rather than counters and the internal code thus has
access to the characters of the string itself.

String methods

The string class has a substantial number of methods as we list in
Table 4-2. However, a number of the useful ones Python has like
toUpper, toLower, strip and split are missing. We’ll illustrate our
own version of these here and later in the text.

begin Return iterator to beginning
end Return iterator to end

size Size of string

length Length of string (same as size)
max_size Maximum size of string

resize Resize string

clear Clear string

empty Return true if empty

back Last character

front First character

append Append a string to the string
push _back | Append a character to the string
insert Insert string into string
replace Replace portion of string
pop_back Remove last character

find Find substring in string

rfind Find last occurrence in string
find_first_of | Find character in string
find_last of | Find last occurrence of character
substr Extract substring

compare Compare strings

Table 4-2 -String methods

Loops, Arrays and Strings 58

Changing string case

While the string class does not have the familiar Python upper()
and lower() functions, the char class does, so you can easily
convert a string to uppercase like this:

// to upper case

for(int i=0; i< fruits.length(); i++) {
fruits[i] = toupper(fruits[i]);

}

Or, you can use the range-based approach:

string word = "BERRY";

int i = 0;

for (char c : word) {
word[i++] = tolower(c);

}

And since C++ is a compiled language, your code will run just
about as fast as any built-in method would. We’ll illustrate the
trim and split methods in Chapter 14.

Converting numbers to strings and vice-versa

Converting from strings to numbers is very easy in C++ using
the string-to-integer (stoi), sting to double (stod) and string to
float (stof) functions:

//convert string to numbers

string snum = "123.4";

double dnum = stod(snum); //convert to double
float fnum = stof(snum); //convert to float
int inum = stoi(snum); //convert to int

You can convert any number to a string with the to_string
function:

//convert number to string
string newst = to_string(dnum);

This works for integers of all sizes, doubles and floats. However,
doubles and floats are by default represented to 6 decimal places;

Loops, Arrays and Strings 59
123.400000

even when all those digits are meaningless. If you want to
generate a string with fewer decimal places, using the format
method:

string outf = format("{:.2f}", dnum);

This will give you two decimal places:

123.40

Example Code on GitHub

e Arrayl.cpp — examples of one and 2D arrays

e Vectordemo.cpp — examples of vectors

e Stringdemo.cpp — examples of strings

e Stringrev.cpp — Reverse a string

e Numconv.cpp —conversion between string and numbers

Making Decisions 60

5. Making Decisions

The familiar if-else C from Python and Java has its analog in
C++. Indentation is common but not required. Many
development environments create this indentation for you.
However, if there is more than one statement in the if or else
blocks, they must be surrounded by braces.

int apples = 5, berries=7;
int fruit = apples + berries;
if (berries < apples) {
cout << "add more berries"<<endl;
}
If you want to carry out either one set of statements or another
depending on a single condition, you should use the else clause

along with the if statement.

if (berries < apples) {
cout << "add more berries"<<endl;

}
else {

cout << "how about them apples?"<< endl;
}

and if the else clause contains multiple statements, they must be
surrounded with braces.

Elif is “else if”

When you have a number of choices in a row, such as in the
example below, it is helpful to use if and then else if. The final
case can be else which covers all the remaining possibilities.

int apples = 5, berries=7;
int fruit = apples + berries;
if (berries < apples) {
cout << "add more berries"<<endl;
}
else if (apples == berries) {
cout << "still need more berries" << endl;

}

Making Decisions 61

else {
cout << "how about them apples?"<< endl;
}

Note that in this simple case, you can write this code without
braces, since there is only a single statement after each part of
the if statement.
if (berries < apples)

cout << "add more berries"<<endl;
else if (apples == berries)

cout << "still need more berries" << endl;

else
cout << "how about them apples?"<< endl;

Combining Conditions

When you need to combine two are more conditions in a single if
or other logical statement, you use the logical and, or, and not
operators. In C++ you use these symbols rather than the and and
or operators Python expects.

&& logical And

I logical Or

!

logical Not
In C++ we would write
int pears = 2;

if ((apples > berries) || (pears < berries))
cout <<"enough fruit" <<endl;

The Most Common Mistake

Since the “is equal to” operator is “==" and the assignment
operator is “="look very similar, they can easily be misused. If
you write

Making Decisions 62

//incorrect use of = sign
if (apples = berries)
cout << "false positive" <<endl;

instead of

//correct use of = sign
if (apples == berries)
cout << "same number of each" <<endl;

The first case is an error in Python, but legal in C++ because it
sets the value of apples to the value of berries. Since the result
is non-zero, this is treated as true. This can lead to some
confusion in your program, and some IDEs may flag it as a
possible error.

Comparing strings

In C++ you can compare strings alphabetically using the same
logical symbols. The system compares the strings character by
character until there is a difference. If they are the same but one
us longer, it is the greater. The comparison is only useful if the
strings you are comparing are of the same case, so you usually
reduce both strings to lowercase before the comparison:

string apple = "apple";

string moreapples = "apples”;

if (moreapples > apple)
cout << "bigger"<<endl;

A ticketing program
Let’s write a program to determine ticket prices by age. It

illustrates how to do a series of if-else if comparisons ending
with a final else.

e Ages 6 and under get in free

o Ages 7to 17 get a student rate
e Age 18 to 59 pay the adult rate
e Ages 60-79 pay the senior rate

Making Decisions 63

e Ages 80 and above get a special, discounted rate

int main() {
// i1f else demo using ticket prices
int age = 22; //start with a non zero age.
while (age > 0) {
cout << "Enter age :";
cin >> age;
int price = 35;
if (age <= 6)
price = @; //toddlers are free
else if ((age > 6) && (age <18))
price=15; //student price
else if ((age >=18) && (age < 60))
price = 35; //adult
else if ((age >=60) && (age <89))
price = 30; //senior
else
price = 20; //super senior

cout << "Price is :"<<price <<endl;

}

return 0;

This little program runs until you enter an age of 0 or less.

The switch statement

The switch statement allows you to do a set of tests on integers
or characters and execute code based on the value. It doesn’t
allow ranges or strings, however, but it can be very useful when
you want to distinguish small whole numbers. It is a simpler
ancestor of Python’s match statement, but can be helpful, for
example, in distinguishing one character commands.

It has the form

switch (num) {
case 1:
statementl;
break;
case 2:

Making Decisions 64

case 3:
statement2;
break;

default:
statementdeflt;

}

There can be one or more statements in each case since each case
1s terminated with a break statement. You can also have several
cases that call the same statement as we show for statement2.

For a working example, let’s redo our ticketing program using
single character commands for each age group:

e C for child

e Y for youth

e A for adult

e S for senior

e & or o for 80 or over

Here’s the entire program:

int main() {

char c = 'a’;
//get the first character of whatever is entered
while (c != 'q") {

cout << "Enter age group: (c, y, a, s, 0) : ";

string ageGroup= "a";
int price = 0;

cin >> ageGroup;

if (ageGroup.length()>=0) {
//convert to Lowercase

c = tolower(ageGroup [0]);
}
switch (c) {
case 'c': //child is free
price=0;
break;
case 'a': //adult
price = 35;
break;
case 'y': //youth

price=15;

Making Decisions 65

break;

s':
price
break;

//senior
30;

case

case 'o':

case '8':
price
break;

default: //everyone else
price = 35;

//octogenarian

20;

}

cout << "Price=" << price << endl;

}

Break and continue

Like Python and Java, C++ has the break and continue
statements that allow you to jump out of the middle of loops. If
you agree with the principles of structured programming, then a
loop should have only one entrance and one exit point, the break
and continue are confusing additions to the language.

e Break jumps completely out of the loop to the next
statement, and
e Continue jumps to the bottom of the loop no matter what

Let’s look at a couple of examples. This program exits the
summation loop as soon as the sum exceeds 15, producing a sum
of 19.

double xarray[] ={5, 7, 4, 3, 9, 12 ,6};
double sum = 0;
for (double x: xarray) {

sum += XxX;

if (sum > 16) {

break;

}

}

cout << "Suml = " << sum <<endl;

Making Decisions 66

This code does the same thing, but uses a quit flag to decide the
exit form the while loop:

//alternate approaches
bool quit = false;
sum =0;
int i = 9;
while (! quit) {
sum += xarray[i++];
quit = sum > 16;

}

cout << "Sum2 =

<< sum <<endl;

This is much cleaner and more readable. And to simplify this
further, you could have written this more directly as:
sum =0; i=0;

while (sum <=16) {
sum += xarray[i++];

}

cout << "Sum3 = " << sum <<endl;

All three examples give the same result, and the last two are
surely clearer.

We might use the continue statement to skip an element in an
array:
//continue statement

for (i=0; i< size(xarray); i++) {
if (i ==4) continue; //skips index 3

cout << xarray[i]<< H

}

cout <<endl;

This one skips element 4, the 5" member, the number 9. The
resulting printout is

5743126

A cleaner way to write this is to just skip the value 9:

Making Decisions 67

for (double x: xarray) {
if (x !=9) cout << x <<" ";
}

This gives the same answer and is much clearer.

The ornery ternary operator

C++ and Java (but not Python) also feature the ternary operator
which allows you to make decisions in a single statement. It is
mostly of historical interest, since it is pretty hard to read and
decipher. It has the form:

variable = (expression) ? varl : var2;

If the expression is true, the variable is assigned the value of
varl and if false it is assigned the value of var2. It is exactly the
same as

if (expression) {
variable = varil;

}
else {

variable = var2;
}

Here’s an example:

int main() {
int berries =100;
int beans = 50;

int produce = (berries > beans) ? berries : beans;
cout <<"produce is: "<< produce << endl;
return 0;

Since this is exactly the same as the more readable:

if (berries > beans)
produce = berries;

else

Making Decisions 68

produce = beans;

cout <<"produce is: "<< produce << endl;

we never use it. This statement is of historical interest, when
compilers were less sophisticated, but today compilers produce
the exact same code for both code snippets. The ternary operator
is great fun in producing “obfuscated C code,” however.

Example programs on GitHub

Decisions.cpp — examples of if-else if-else code
Ticketages.cpp — example of ticket age code
Switcher.cpp — switch examples

Breakcont.cpp — illustrates break and continue
Ternary.cpp — ternary operator example

Functions 69

6. Functions

Functions are a significant part of C++ and most other
languages. They are units of code that carry out a specific set of
operations. And while functions can be called many times
throughout a program, there are plenty of cases where a function
is called just once, but conveniently groups a set of operations
that you need to call while starting up a program.

Functions are usually called with one or more arguments and
may return some value when they exit. To declare a function,
start with the name of the function followed by parentheses. The
entire function is enclosed, of course, in braces. Most
development systems indent the code inside the function much
as they do the contents of a loop. Let’s write a really simple
function first, that calculates the square of a number:

//square the argument and return it

double sq(double x) {
double y = x * x; //create the square
return y; //and return it

}

Note that functions that return a value have their type declared
first thing, followed by the function name and then the
parentheses, which may contain one or more arguments, each
with their type. Functions begin at the opening brace and end at
the closing brace. If they return a value, they use a return
statement.

The variable y inside the function is a local variable. It has no
existence outside the function’s braces. And in fact, in this
simple case, you could just omit it:

//square the argument and return it
double sq(double x) {
return x * x; //and return it

}

Of course, functions can call other functions. We could create a
cubed function that calls the sq function:

Functions 70

//cube the argument and return it
double cube(double x) {
double y = sq(x);
y =y *x; //create the cube
return y; //and return it

}
Then we call those functions from our main program:
int main() {

double asqd = sq(12.9);

double cubed = cube(12.0);

cout << asqd <<" "<< cubed<< endl;

Function order

But C++ has a particular rule about the order of such functions:

1. Generally, the main function must come last.
2. If one function calls another function, that second
function must already have been declared in your code.

In other words the C++ compiler builds a symbol table in the
same pass as the compilation, and it must have already
encountered any additional functions. So, in this case, the
functions must appear in the order:

* sq(
o cube()
e main()

So cube can call sq but not the other way around, and main can
call both. We’ll see how you work around this issue shortly.
Overall, our little program looks like this:

using namespace std;

//square the argument and return it

double sq(double x) {
double y = x * x; //create the square
return y; //and return it

}

//cube the argument and return it
double cube(double x) {

Functions 71

double y = sq(x);
y =y *x; //create the sube
return y; //and return it

int main() {
double asqd = sq(12.0);
double cubed = cube(12.0);
cout << asqd <<" "<< cubed<< endl;
return 0;

Polymorphism in functions

You can have more than one function with the same name as
long as the arguments are different in type or number. So you
could also write:

int sq(int x){
return x*x;
}

and that function will not collide with the double version, since
the arguments are different. In C++, unlike Python, the function
signature include the types and number of arguments, and they

can co-exist as long as the signatures differ.

Function prototypes

You could create a power function, and then have the square and
cube call it:

double power (double x, int pwr) {
double y=1;
for (int i=1; i<= pwr; i++){
y =y *x;
}

return y;

}

But eventually you are going to be in the position where several
functions call each other, and there is no obvious order to put
them in so each knows about the others.

Functions 72

In this case, we resort to function prototypes. We simply declare
all of the function names and types at the beginning of the
program, but without the function body:

double sg(double x);

double cube (double x);

int sg(int x);

double power (double x, int pwr);

Then you can place the functions anywhere you want, usually
after the main function. This way every function, including
main knows about every function in the program.

Passing arguments to functions

If we create the function sql, which operates on its argument:

double sql(double x) {
X = X*X;
return x;

}

we appear to be changing the argument itself. But if we look at
the result of this simple call:

double x =12;
double y = sql(x);
cout << "y="<<y<<" x="<<x<<endl;

The resulting output is:

y=144 x=12

In other words, even though we changed x inside our sq1
function, x in the calling program is not changed. This is true in
Python as well, and in both cases it is because x is copied into
the function. So the value of x is passed in, not the original x
variable in the calling program. This is referred to as call by
value because the variable’s value is passed in, not the variable
itself.

Functions 73

In Python, simple variables are always passed by value, and
larger mutable objects are passed by reference.

This is not true in C++. All variables other than arrays are copied
into the function, and arrays are actually pointers as we’ll see
next.

Default arguments

You can also create functions with default arguments. For
example:

void errmsg(string text ="error in program") {
cout <<text<<endl;

}

If you call this function with no arguments, it uses the default
value of text shown in the function declaration.

errmsg(); //prints out “error in program”

But if you call this function with a new message

errmsg("both arguments are zero");

it prints that out instead,

You can do this with numeric arguments as well:

double area(double x, double y =0){
double retval = 0;

if (y !=0) retval= x*y;
else retval= x*x;

return retval;

}

Then a single argument returns a square and two arguments
returns their product:

Functions 74

cout << area(12,14) << endl; //product
cout << area(12) << endl; //square

Using constant declarations

You already know that you can declare a value as being constant
using the const declaration:

const ultimate = 42;

But you can use this same declaration to indicate that some
function arguments cannot be changed. Suppose you wanted to
pass an array to a function and have it compute the mean value.
If you declare that the array is a constant, your function cannot
change any members of the array:

double meanValue(const double x[], size_t size) {
double sum = 0;
for (size_t i=0; i <size; i++) {
sum += x[i];
}
//x[é] = -1; //read only variable--error
return sum / size; //calculate average

}

In fact, if you try to set an array value as we show in the
comment, the compiler will flag this as an error because the
array is now read only. You can do the same kind of things with
class members and entire classes as we will see shortly.

It is relatively uncommon for programmers to write functions
which change their arguments. Instead, functions return values.
For this reason, the const declaration is frequently omitted. But
if you are writing code others may use, it is wise to include them.

Example programs

e functs.cpp — illustrates sq and cube functions
e funcproto.cpp — shows how to use function prototypes
o funcdefault.cpp —shows default arguments

e constExample.cpp — the mean value example using
const

Using Pointers 75

/. Using Pointers

Pointers appear promiscuously in the C++ and C languages and
are variables containing the address of some other variable or
structure. They are particularly useful when you want to pass a
large object without the overhead of copying it.

While the idea of pointers seems daunting to some, we can cover
it in three lines. Suppose you create a string object

string mtb = "meatball";

and want to get its address. We use the reference operator or
ampersand:

string* pmeat = &mtb; //pointer to string

The new variable pmeat is a reference or pointer to the mtb
variable and has the type “string *” which means pointer to
string.

Now, if we want to get the value of that variable, we use this
same *-operator to dereference the pointer, getting back the
original contents:

cout << *pmeat <<endl; //print out the string text

Here we see the “*pmeat” means get the value the pointer
points to. And if run this C++ will indeed print out

meatball
as you expect.
To summarize:

e ‘&’ gets a pointer to a variable.
o ‘¥’ gets the value pointed to by the pointer (or
dereferences it.)

Using Pointers 76

3T 32}

The only point of confusion is that C++ also uses the
in declaring a variable’s type.

symbol

double* pval;

means that pmeat is a pointer to a double value. You can also
write this as

double *pval;

which has exactly the same meaning.

Arrays and pointers

If you create an array of doubles, like this

double xarray[] = {12,14,15,16,20};

the array name xarray is really a pointer to the memory the
begins the storage of the array. Here there are 5 8-byte double
precision numbers stored in 40 consecutive bytes.

So you could copy that pointer, and then increment it to point to
each of the 5 elements:

double* px = xarray;
for (int i=0; i<5; i++) {

cout << *px++ <<" " //array pointer incremented

}

In the above example, px is a pointer to the beginning of the
array, just as xarray is. But if we increment it, it will point to
each successive data element in the array. And the size of that
increment is determined by the data type. So *px points to the
current array element, and if we increment after we use it, it will
then point to the next number.

The loop prints out the result:

12 14 15 16 20

Using Pointers 77

by moving the pointer through the array.

Calling functions

We have already seen that a function like this one

//call by value.
// Changes only within the function
void getReal(double x) {
x=15; //changes only inside function

}
does nothing to the calling parameter. If you call the function

double y {172.6};
getReal(y); //pass by value

the variable y is unchanged. This is true of all single-value
variables.

But, if you pass a pointer to y into this function:

void getPreal(double* px) {
*px = 22; //changes the calling parameter

}

and call the function with a reference to y,

getPreal(&y); //pass by reference

the value of'y in the calling program is changed, because you
dereference the pointer with that “*” so you are changing the
original calling program’s variable. In other words, *p points to
the variable in the calling program, and you can change it from
within the function. This is called call by reference.

In this simple case, this just looks malicious, but in real
programs that variable might be an instance of a class, and it is
not unreasonable that a function might want to change some
value inside a class. So, this is much more useful than it first
might seem.

Using Pointers 78

Functions and Arrays

If you pass an array into a function, you are passing in the
pointer to the beginning of the array. Using the same xarray we
created above, we might want to call this function:

changeArray(xarray);

And here is the function

void changeArray(double *xa){
xa[4] = 42.9; //change one value
}

The xarray variable points to the beginning of the array, so we
can use the above pointer to form the array expression. In fact,
we could also add 4 to the pointer to get the same result:

*(xa+4) = 42.0;

You could also create a function that has the array itself as an
argument:

void changeAnArray(double xarray[]){
xarray[3]=666;
}

But it is actually just another way of writing the same thing.

One problem with passing arrays into functions, is that only the
pointer to the start of the array is passed in. There is no
information on the array’s actual size, and while the compiler
will let you write:

void changeAnArray(double xarray[]){
xarray[300]=666;
}

this will fail at run time because that is probably outside the
bounds of the array. One way to get around this is to pass the
array size into the function as well:

Using Pointers 79

void changeArray(double *xa, size_t size){
xa[4] = 42.9;
}

Of course, you must then check the index you use against that
size:
if (index < size) {
xa[index] = 42.0;
}

But, you can get around all of these restrictions by using vectors
instead of arrays. Vectors carry their size information (which
may expand as needed) along with them.

If you create a vector and pass it to a function that changes
values in it:

vector <int> v = { 3,6,7,8,12 };
changevec(v);

and that program changes the value of one element:

void changeVec(vector<int>px) {
if (2 < px.size()) {
px[2] = 123;
}
}

the resulting vector is copied into the changevec function and
only that copy is changed. The vector in the calling program is
unchanged.

Obviously copying large vectors around isn’t ideal, but if you
send a pointer to the vector into the function, it changes the
original vector:

void changeVec(vector<int>& px) {
if (2 < px.size()) {
px[2] = 123;
}

Using Pointers 80

C strings and pointers

In the C language, strings were represented as an array of
characters, terminated by a zero or null character. For example:

char greeting[6] ={"hello"}; //C string 1is an array

The actual array size must be one greater than the number of
characters to make room for the ‘\0’ terminating character. And
just as with the numeric arrays we’ve been dealing with, the
address of that string is a pointer to that array. So you could print
out the string a character at a time using a pointer:
char* pl = greeting;
for (int i=0; i<5; i++) {

cout << *pl++;

}

cout <<endl;

Now, by contrast, strings in C++ are actual classes and you can
print them out without much thought. However, if you come
across some old function that requires a C string, you can get one
using the ¢_str() method:

//a C++ string
string cpstring("This is a C++ string");
cout <<cpstring <<endl;

//get the C string within
const char* cpp = cpstring.c_str();

for (size_t i=0; i< strlen(cpp); i++) {
cout << cpp[i];

}

cout <<endl;

However, the C-string you get is constant or immutable. To get
that same C-string so you can alter it, you can use the data()
method:

Using Pointers 81

//get a mutable version of that C-string
char* vcpp = cpstring.data();

vcpp[2] = 'u'; //change one character
cout <<vcpp <<endl;

Remember that C-strings are mainly of historical interest, and
you will seldom use them. The preferred C++ string is the string
class.

Example code on GitHub

e Pointers.cpp — contains all the code examples in this chapter
e ChangeVec.cpp — changes vector inside function
e Charpointer.cpp — illustrates C string

Using Pointers 82

Sets, tuples and maps 83
8. Sets, tuples and maps

Sets

Sets in C++ are very much like those in Python. The difference is
that the members must all be of the same declared type. The
main use of a set is to create collections of items which have no
duplicate members. If you try to add another item to a set that
already holds that item, it will not be added.

There are actually two set objects in C++: set and
unordered_set. The usual set is always stored in ascending
order, while the unordered_set which is backed by a hash table
for controlling duplicates. For small sets, it doesn’t make much
different which you use. For large sets, the unordered set may
run faster. Be sure to run a timing test on your data to be sure.

Creating sets is incredibly simple.

set<int> cset={2,5,12}; //create a set
cset.insert(5); //add a duplicate
cset.insert(6); //add a new number

Now, if we print out that set:

//print out set contents
for(int s: cset){

cout << s <« N

}

cout << endl;

We will find that the set only contains one 5.

25612

If we want to find out if the set contains a particular value, the
find method will do it for you.

Sets, tuples and maps 84

//check to see if set contains a 6
int num = 6;
auto it = cset.find(num);
if (it != cset.end()){
cout << num <<" is in the set"<<endl;

}

else
cout << num << "is NOT in the set" <<endl;

The find method returns an iterator which points to the position
of that value in the set. But if that value is not found in the set,
the iterator points to the end of the set. Hence by comparing with
the end iterator, you determine whether the value was found or
not.

Sets are not limited to integers, of course. They can be made up
of strings:

set<string> stSet{"Fred", "Nora", "Zoltan"};

or doubles:

set <double> dSet {22.4, 6.02e23,1.008};

Merging sets

Merging sets is not too difficult, although it should be easier. You
create the sets and then insert all of the second set at the end of
the first set.

set <string> fruits{"apples", "pears", "cherries"};
set <string> piestuff{"nuts"”, "berries", "apples"};
set <string> pie = fruits ;
pie.insert(piestuff.begin(), piestuff.end());

Merging these two creates a set with 5 members, since apples
occurred twice:

apples berries cherries nuts pears

Sets, tuples and maps 85

There are articles on how to compute the intersection of two sets
that you can find on line, but they are too complex to take up
here.

Tuples

Tuples in C++ are much like those in Python, a collection of
values of different types that cannot be changed or added to
(immutable). They are a convenient way to return more than one
value from a function and you can create them rather simply.

First, you can declare a tuple and all its types like this:

tuple <int, string> breadTuple(12, "loaves");

and secondly, you can use the make_tuple function to create the
tuple, and deduce the types in the process:

auto newTuple =
std::make tuple ("Sarah", "Snoody", 14, 'y');

Note that we’ve used the auto type to tell the compiler to create
the needed type without you spelling it out. But the main thing
about the statement shows how simple a tuple really is to create.

However, fetching values from a tuple is unnecessarily
complicated. You cannot use a variable to specify the index into
the tuples, here numbered O to 3. Instead, you must fetch them
using the constants 0 to 3:

// You must access the tuples with a constant
index, not a variable

cout<< get<0>(newTuple) <<" ";
cout<< get<l>(newTuple) <<" ";
cout<< get<2>(newTuple) <<" ";
cout<< get<3>(newTuple) <<" ";

cout << endl;

Sets, tuples and maps 86

Fortunately, there is a convenient workaround. You create a set
of variables representing the values within a tuple:

string frname, lname;
int age;
char honors;

Then you can use the tie function to copy the contents of the
tuple into those variables:

//copy the tuple members into the variables

// to make them easier to print out or use.

std::tie (frname, lname, age, honors) =
newTuple;

Or, starting in C++ 17, you can copy them into new variables
created on the spot as you see here:

auto [frnamel, lnamel, agel, honorsl] =
newTuple;

In this case, you don’t declare the variables in advance: they are
created with the proper types because we used auto to say that
we want the compiler to deduce the types of those variables.

One of the most controversial parts of discussing tuples is how to
pronounce them. Now Easy Reader would probably suggest too-
pul, since the first syllable ends in a vowel, and in many cases in
English that means the vowel should be long. But computer
geeks have decided it should be pronounced tuh-pul, as if there
were two p°‘s instead of one. The rationale for this is that triple,
sextuple and septuple are pronounced with a short ‘u’ so it
should be, too. This of course ignores quadruple and octuple
which usually have a long vowel pronunciation. But you can
pronounce it any way you want. If in spoken discourse, someone
corrects you, just remember that if the British can pronounce the
surname Cholmondeley as “Chumley,” all bets are off.

Sets, tuples and maps 87

Maps and Dictionaries

C++ does not have a dictionary type like Python does, but the
map type is very similar. While Python dictionaries are usually
made up of a string key and a string value, you have more
flexibility in C++, since you must declare the types of the key
and value in advance:

map<string, string> dbanswer;

Then you can insert values into the dictionary like this:

dbanswer.insert (pair<string, string>("frname",
"Sally"));

dbanswer.insert (pair<string, string>("lname",
"Splurge")) ;

dbanswer.insert (pair<string, string>("score",

"98")),.

and if you want to fetch a value using the key, you simply fetch it
using the key:

cout << dbanswer["score"] << endl;

If you aren’t sure that the map contains a value with that key,
you can check it using find. If find returns an iterator pointing to
the end, the key is not found.

string keyScore = "score";
auto it = dbanswer.find(keyScore);
if (it != dbanswer.end()){
cout << dbanswer[keyScore] << endl;

}

You can also print out the entire dictionary entry in a simple loop
like this:

string keys[] = {"frname", "lname", "score"};
for(int i=0; i<3; i++){

Sets, tuples and maps 88

wn, n

cout <<keys[i] << << dbanswer[keys[i]] << endl;

A more compact way of adding a list of pairs to a map is shown
below.

map<string,string> states;
states["AR"] "Arkansas";
states["AK"] "Alaska";
states["CA"] "California";
states["CT"] "Connecticut”;
states["MO"] "Missouri”;
states["KS"] "Kansas";

cout << "CT: "<<states["CT"]<<endl;

It would be possible to create a map within a map where the
inner map contains other state properties, like capital and
population, and then create an outer map of these property maps,
but it is probably better to create little State classes instead. We’ll
take up classes in the next chapter.

Example programs in GitHub

o setsTuples.cpp — examples of sets and tuples
e maps.cpp — examples of using maps
o setandTuple.cpp — shows creation of tuples.

Classes and OOP 89

9. Classes and OOP

Classes in C++ are similar to the ones you learned in Python, but
they are more flexible than Python’s are. Quite a few basic C++
books and tutorials put off covering classes until so late in the
book that some newcomers have gotten the idea that classes are
somehow optional add-ons, and they put off learning them at all.

But they have gone at this wrong-way round. Almost every
component of C++ is an object.

e Objects hold data and have methods to access and
change that data

For example, strings, tuples, sets and maps are all objects, as are
complex numbers. And they all have functions associated with
them called methods that allow you to get and change that data.

The whole idea of data inside classes is called data
encapsulation. You don’t need to know how the data are
represented or computed: you just use the getter and setter
methods to obtain and store that data.

But how do you make your own objects?

A Rectangle class.

You create objects by first defining a class which describes that
object. Let’s start with a simple example that draws a rectangle.
To create a class you using the class keyword followed by a
name.

class Rectangle {
int width, height;

public:
Rectangle(int w, int h) {
width = w;
height =h;
}

1

Classes and OOP 90

Much like the similar Python class, this Rectangle class begins
with a class declaration followed by the class name. It is neither
customary nor frowned upon to capitalize class names. It does
help set them off in the code, though. The code in the class
begins after a left brace and ends with a right brace followed by a
semicolon.

The class instance variables are usually declared first and are by
default private whether you declare them as private or not. This
means that they can only be accessed by code within the class. If
you want to derive new classes from this class and want them to
be able to access these variables, you declare them as protected
instead. In C++ it is conventional to keep all these variables
private or protected and allow programs to obtain those values
with get methods like this one:

int getwWidth() {
return width;

}

In C++, the constructor copies the variable values into the class
instance, much like the __init__ method in Python. The
constructor has the same name as the class but copies the
arguments into the variables width and height.

public:
Rectangle(int w, int h): {
width = w;
height = h;
}

You can also use the slightly shorter brace notation to indicate
copying these variable values:

public:
Rectangle(int w, int h): width{w}, height{h} {
}

Classes and OOP 91

Our Rectangle class can print out a rectangle made up of
asterisks and spaces. We add the spaces in the top and bottom
lines to match the spacing between lines. We could print the top
(and bottom) lines of the rectangle by printing out an asterisk
followed by 2 spaces for each element of the width:

void drawTop() {
for (int i=0; i<width; i++) {
cout << "¥ "5

}

cout <<endl;

But it might better to make that asterisk and spaces string into a
constant, along with 3 pure spaces we’ll need for the middle
lines:

const string star="* ";
const string spaces =" "

Then our drawTop method beomes:

void drawTop() {
for (int i= 0; i < width; i++) {
cout << star;
}
cout << endl;

}

and we draw the sides with a similar method:

void drawSides() {
for (int i=0; i<height-1; i++) {
cout << star; //left side
for (int j=0; j<width-2; j++){
cout << spaces;
}
cout << star << endl; //right side
}
}

and we can draw the whole rectangle with this simple method:

Classes and OOP 92

//draws whole box

void draw() {
drawTop(); //top
drawSides(); //sides
drawTop(); //bottom

}

And here is the entire 5 x 8 rectangle:

* X X ¥ ¥ ¥
¥ %X ¥ ¥ ¥ ¥

Inheritance

Drawing a square is, of course, a special case of Rectangle. We
can derive a Square class from the Rectangle class by simply
passing the side dimension into the constructor twice:

//square derived from Rectangle
class Square:public Rectangle{
public:
Square(int size):Rectangle(size, size){}

1

And that’s it. That’s the whole class. The size argument is passed
to the Rectangle constructor. Everything else is the same! Here’s
the proof:

* k%

* X X ¥ ¥ ¥
* ¥ ¥ ¥ * *

Classes and OOP 93

More useful classes

Rather than deal with cute Dog or Car classes, let’s instead get to
work with a useful class describing an employee. Our employee
class will contain the employee’s name, salary, benefits, and an
ID number. Here’s the beginning of the C++ class for an
Employee:

class Employee {
private:
//private variables
int idNum;
string frname, lname;
double salary;
double benefits;
public:
//constructor initializes variables
Employee(int id, string frnm, string lnm,
double sal, double ben = 1000){
frname = frnm;
Iname = 1lnm;
idNum = id;
salary = sal;
benefits = ben;

}
//return salary
double getSalary() {
return salary;
¥

The public section of the class contains all the methods that
other classes can access and, most important, contains the
constructor. Much like the Python __init__ method, the
constructor sets the values of many or most of the class’s private
variables as you see above. There is a second style of syntax for
the constructor that is a little more compact:

public:
Employee(int id, string frnm, string lnm, double sal):
idNum{id}, frname{frnm}, lname {lnm}, salary{sal}

Classes and OOP 94

Note that these values are assigned to the class variables after a
colon and before the open left brace of the (now empty) body of
the constructor.

You can even use this brace construction to initialize the class
variables so that have actual values ahead of time:

int idNum{0};

string frname{NULL}, lname{NULL};

double salary{0.0};
double benefits{1000};

These are called braced initializers and are in most cases the
same as using equals signs. The one difference is in the case
when you inadvertently write an initializer statement that
narrows the value. For example:

int x = 4.5; //always legal in C++
int x {4.5}; //compiler will issue a warning

If you convert a double or float to an integer, this might be a
mistake, and the compiler will issue a warning if you use the
braced initializer.

Of course, you can have default values in the constructor as well
as in any class methods. For example, the benefits value might
have a default value like this:

Employee(int id, string frnm, string lnm,
double sal, double benefits = 1000) {

but this presents some style problems. We used abbreviated
names for the other variables, but for one whose name might be
spelled out in the calling program

Employee empl = Employee(id++, "Susan", "Sugar",
5000, benefits=1000);

Classes and OOP 95

we want to use that full name. Then, what do we do with the
class member variable names? One solution is to prefix the
internal member names with an m_ as we do here:

class Employee2 {
private:

int idNum{e};

string m_frname{NULL}, m_lname{NULL};
double m_salary{0.0};

double m_benefits{1000};

public:

1

Employee2(int id, string frname, string lname,
double salary, double benefits=1000) :
idNum{id}, m_frname{frname}, m_lname{lname},
m_salary{salary}, m_benefits{benefits} {
}

//return the current salary
double getSalary() {

return m_salary;
}

//return the name
string getName() {

return m_frname +
}

+ m_lname;

This makes using those names internally a little more awkward
but makes the names of the variables in the constructor more
obvious.

Another approach is to use the “hidden” this pointer which
points to that class instance. It is pretty much like the self
variable in Python except that it is a pointer:

Employee(int id, string frnm, string lnm, double sal,

double benefits = 1000) {
frname = frnm;
Iname = 1lnm;
idNum = id;
salary = sal;
this->benefits = benefits;

Classes and OOP 96

You could do this for all the variable names or just for the default
ones, as you prefer. But you must make the names in the
constructor argument and the names of the internal variable
somehow different.

Deriving new classes

Now let’s consider some other types of employees. For example,
we might have temporary employees who get reasonable
salaries, but no benefits. We can derive a new TempEmployee
class in just a few lines:

class TempEmployee : public Employee {
public:
TempEmployee(int id, string frnm, string lnm,
double sal) :
Employee(id, frnm, lnm, sal) {
benefits = @; //temp employees no benefits

1

That’s the whole class. The only difference is that the constructor
sets the benefits value to zero.

We might also have an Intern class, who not only gets no
benefits, but has a salary cap, since these are essentially trainees.

We do this by creating a little private capSalary method that sets
any salary proposed above 500 to 500.

void capSalary() {
if (salary > 500) {
salary = 500;
}

So, our entire Intern class, which is also derived from the
Employee class makes two changes: benefits are zeroed out and
the salary is capped:

Classes and OOP 97

class Intern : public Employee {
private:
//cap the salary at 500 no matter what was entered
void capSalary() {
if (salary > 500) {
salary = 500;
}

public:
Intern(int id, string frnm, string lnm, double sal) :
Employee(id, frnm, lnm, sal) {
benefits = 0; // no benefits either
capSalary(); //cap the salary

1

Public, protected and private inheritance

In the above examples (and most examples) we show the base
class name preceded by the public keyword.

class Intern: public Employee {

However, you can if you wish, use the protected or private
keywords to define the inheritance instead.

e In public inheritance, the base class public variables are
public in the derived class and protected variables are
protected in the derived class.

e In protected inheritance, base class public and protected
variables become protected in the derived class.

e In private inheritance, base class public and protected
variables are private in the derived class.

Note, however, that if you leave out that public modifier, it
defaults to private and your derived classes will not have access
to any of the base class variables.

Classes and OOP 98

Classes within a class

Now suppose we have a small group of employees and want to
display them or do some calculations on the group. It would be
nice we could create a class that represents all the employees.
This is just a simple as it seems: we just add each new employee
to an array, a vector or some other container, so we can run
through them quickly.

You might think that a vector of Employee objects would be just
the thing, but that stores copies of the Employee objects rather
than the originals. How do we solve this? By using pointers
some more. In fact, this is the most common use of pointers in
C++.

When we create an Employee object like this:

Employee emp = Employee(id++, "Susan", "Sugar", 5000);

the compiler reserves memory for that object at compile time,
and that memory is relinquished when the program exits.

But if you wanted to create pointers to a bunch of Employee
objects you could use the new operator which reserves that
memory at run time:

Employee* empl = new Employee(id++, "Susan", "Sugar",
5000) ;

Here, empl is a pointer to the memory where that Employee
object is located. Then, if we wanted to keep an array of those
employees, those pointers would refer to the original objects and
not copies. As with the first approach, all that memory is
relinquished when the program exits. However, it could be that
recreating that list within some class would cause more memory
to be reserved. This could eventually eat up a lot of memory.
There are techniques for dealing with this that we’ll take up later.

Right now, we simply want to create an Employees class that
holds all the Employee objects. Inside the class, we’ll use a

Classes and OOP 99

vector to hold the list of pointers. Note that the addEmployee
method expects not an Employee, but a pointer to an Employee.

class Employees {
private:
//contains an array of pointers to Employee objects
vector <Employee *> employees;
public:
//add a pointer to an Employee class to the vector
void addEmployee(Employee* emp) {
employees.push_back(emp);
}
//get the size of the vector
int getCount() {
return employees.size();
}
//get the pointer to the i-th Employee
Employee* get(int i) {
return employees[i];
}
¥

Finally our main method uses all these classes to create the list
and print it out. Note that you can create the employee pointers
one at a time as we illustrated above, or you can just create them
within your call to the addEmployee method:

int main() {
Employees employees;
int id = 1;
Employee* empl = new Employee(id++,

"Susan", "Sugar", 5000);
employees.addEmployee(empl);
employees.addEmployee(new Employee(id++,

"Sarah", "Smythe", 2000));
employees.addEmployee(new TempEmployee(id++,

Billy", "Bob", 1000));
employees.addEmployee(new Intern(id++,
"Arnold", "Stang", 800));

for (int i=0; i< employees.getCount(); i++){
Employee *emp = employees.get(i);
cout << emp->getId()<<" "<< emp->getName() <<
" " << emp->getSalary() <<

Classes and OOP 100

<< emp->getBenefit() << endl;

}

return 0;

}

Classes and headers

In this simple little program, we actually created 4 classes:

e Employee
e TempEmployee
e Intern

e Employees

And all of them are dependent on the Employee class being
defined first, since the Employees class contains instances of
Employee and Intern and TempEmployee are derived from the
base Employee class. Since these are relatively small, simple
classes, it is convenient to put them all in the same file, and as
long as the Employee class is defined first, everything will
compile as expected.

But it is quite common to have situations where keeping the
classes in that convenient order is much more difficult to
achieve. In that case, it is very common to create prototypes of
the classes at the top of the file, with the bodies of those classes
below main as we did for our function prototype.

Let’s take a look at the prototype for the Employee class:

class Employee {
protected:
int idNum;
string frname, lname;
double salary;
double benefits ;
public:
Employee (int id, string frnm, string lnm,
double sal,
double benefits=1000);
double getSalary();

Classes and OOP 101

string getName () ;

int getId();

double getBenefit();
}i

Note that all the public and private or protected methods are
listed but terminated with a semicolon and no braces. Then the
actual “guts” of the class are inserted below the main function:

//--—-Employee methods—--
Employee: :Employee (int id, string frnm, string
1lnm, double sal,

double benefits) {

frname = frnm;
lname = lnm;
idNum = id;
salary = sal;

this->benefits = benefits;
}
double Employee::getSalary() {return salary; }
string Employee::getName () {return frname + " "
+ lname; }
int Employee::getId() {return idNum; }
double Employee::getBenefit () {return
benefits;}

Here we see that each method is prefixed by the class name and
two colons. Also, note that the default value for the benefits
parameter is not repeated. It is only shown in the prototype. This
makes sense, since the value must be known at compile time.

Here is the rather simple TempEmployee prototype:

class TempEmployee : public Employee {
public:
TempEmployee(int id, string frnm, string lnm,
double sal);
¥

Classes and OOP 102

Note that the prototype does not include the inheritance relation
to Employee, nor how the values are copied into the class. This
takes place in the actual method section:

//---Temp Employee methods--
TempEmployee: : TempEmployee(int id, string frnm,
string 1lnm, double sal) :
Employee(id, frnm, lnm, sal)

{
¥

benefits = 0; //temps do not get benefits

Here the inheritance structure is shown, and the setting of the
benefits parameter.

The Intern methods are shown in the prototype in a similar
fashion. The private capSalary method is shown but the details
are only shown in the method section:

class Intern : public Employee {

private:
//cap the salary at 560 no matter what was entered
void capSalary();

public:
Intern(int id, string frnm, string 1lnm, double sal);

1

As before, the copying of values into the base class is only
shown in the methods section.

//----Intern methods-----
//cap the salary at 500 no matter what was entered
void Intern::capSalary() {
if (salary > 500) {
salary = 500;
}
}

Intern::Intern(int id, string frnm, string lnm,
double sal) :
Employee(id, frnm, lnm, sal) {
benefits = 0; // no benefits either
capSalary(); //cap the salary

Classes and OOP 103

The Employees class is similar.

Using Headers

All of the #include directives that start off C++ programs contain
prototype-like files for what ever class they refer to. Those that
are part of the standard C++ libraries have been precompiled for
faster access, and those include files are written inside greater-
then, less-than brackets like this

#include <string>

But for your own programs, you can make such include or
header files for your own classes and they are exactly the same
as the prototype files we wrote above. The only difference is that
for each class, you make header file, such as “Employee.h” and a
cpp file containing body of those methods. You have to include
the appropriate namespace directives and any library include file
declarations as well. Here is the header for our Employee class:

#ifndef EMPLOYEEHEADERS_EMPLOYEE_H
#tdefine EMPLOYEEHEADERS_EMPLOYEE_H
#include <string>

using namespace std;

class Employee {
protected:

int idNum;

string frname, lname;

double salary;

double benefits ;
public:

Employee(int id, string frnm, string lnm, double sal,
double benefits=1000);

double getSalary();

string getName();

int getId();

double getBenefit();
¥

#endif //EMPLOYEEHEADERS_EMPLOYEE_H

Classes and OOP 104

And here is the body file Employee.cpp:

#include "Employee.h"
//---Employee methods---
Employee::Employee(int id, string frnm, string lnm, double
sal, double benefits) {

frname = frnm;

Iname = 1lnm;

idNum = id;

salary = sal;

this->benefits = benefits;
}
double Employee::getSalary() {return salary; }
string Employee::getName() {return frname + " "
int Employee::getId() {return idNum; }
double Employee::getBenefit() {return benefits;}

+ lname; }

The interesting addition that IDEs like Visual Studio and CLion
make is some sort of #ifndef statement to keep the compiler from
reading the file in more than once if several others refer to it. In
CLion, they look like the Employee.h above. In Visual Studio, it
uses another approach by placing this single statement at the top
of each include file:

#pragma once

The main program

Now that we’ve taken this relatively simple program apart, the
main program is really just the code in main plus a bunch of
includes. Here is the resulting main program:

#include "Employee.h"
#include "Employees.h"
#include "TempEmployee.h"
#include "Intern.h"

using std::cout;
using std::endl;

Classes and OOP 105

using std::string;
using std::vector;

//----Main program starts here----
int main() {
Employees employees;
int id = 1;
Employee* empl = new Employee(id++,
"Susan", "Sugar", 5000);
employees.addEmployee(empl);
employees.addEmployee(new Employee(id++,
"Sarah", "Smythe", 2000));
employees.addEmployee(new TempEmployee(id++,
"Billy", "Bob", 1000));
employees.addEmployee(new Intern(id++,
"Arnold", "Stang", 800));

for (int i=0; i< employees.getCount(); i++){
Employee *emp = employees.get(i);

cout << emp->getId()<<" "<< emp->getName() <<
" " << emp->getSalary() <<" "<<emp->getBenefit()
<< endl;

}

return 0;

Summary of headers

As long as you are writing short, experimental programs, you
probably won’t have to make prototype headers very often, and
separate header files even less often. But you need to understand
that most larger programs take advantage of these features to
separate the various classes from each other.

Multiple Inheritance

Like Python, but unlike Java, for example, C++ supports
multiple inheritance, where you can create a new class that has
member methods (and variables) from two or more classes. As
this can quickly get very tangled, this feature, you need to use it
sparingly and thoughtfully. Most frequently, people create
classes having multiple inheritance when they want to create a

Classes and OOP 106

class having methods that already exist in another class. Often
this other class is more of an interface than a complex class, but
once you have created such a class, you can treat as a member of
either class hierarchy when convenient.

Let’s take a really elementary example. Suppose you have a few
employees that are really good a public speaking and represent
your company well. You could derive a new class directly from
Employee, or you could realize that you already have a Speaker
class you could use:

class Speaker {
public:
void inviteTalk() {
cout << "Can you give a talk next week?" <<endl;

}
void giveTalk() {
cout << "Greetings and blah blah blah..."<<endl;

}
1

Then you could create PublicEmployee class by deriving it from
both class hierarchies:

class PublicEmployee: public Employee, public Speaker {
public:

PublicEmployee(int id, string frnm, string lnm, double
sal) :

Employee(id, frnm, lnm, sal) {

}
1

Here we create an instance in the usual way:

PublicEmployee* pemp = new PublicEmployee(id++,
"Elizabeth", "Impressive",6000);
pemp->inviteTalk();

And it is that easy to create a class with multiple inheritance.
Note that you must make sure to declare the inheritance from
both parent classes as public in order to use those public methos.

Classes and OOP 107

Polymorphism

Polymorphism is jaw breaking term for objects that change form.
For example, our TempEmployee class changes form from the
base Employee class by zeroing out the benefits value. This is
essentially method polymorphism.

But another type of polymorphism, often called overloading is
common in C++, and cannot easily be achieved in Python. To
take a trivial example, suppose we made a class that has a
method for adding two numbers together.

class Adder {
public:
double addNums(double x, double y) {
return x + y;

}
¥
Then, we could call it to carry out addition pretty simply:

Adder adder; //create instance of Adder
cout << adder.addNums(12.1, 14) << endl; //add 2 nums

But now, suppose we get string values from some visual entry
field and wanted to add those. The method would have to invoke
the string conversion function stod (string to double). Here’s
such a method:

//add numbers in two strings
double addNums(string x, string y) {
return stod(x) + stod(y);

}

We would then call it by:

cout << adder.addNums("22.4", "1.008") << endl;

But note that this method has the same name and the same
number of arguments: just different fypes of arguments. This is
legal in C++ (although not directly in Python). And there could
be two more for one string and one double as well:

Classes and OOP 108

double addNums(string x, double y) {
return stod(x) + y;
}

double addNums(double x, string y) {
return x + stod(y);
}

These are all legal and compile properly. In fact, we could
change the number of arguments as well:

double addNums(double x, double y, double z){
return x + y + + z;
}

and call it by

cout << adder.addNums(122.3,303.4,45.6) << endl;

This kind of overloading is common in C++, and as you can see,
it can be pretty useful.

Virtual Functions

You can use the keyword virtual in C++ to indicate that
functions are to be inherited in derived classes. Suppose we
added the keyword to the getSalary() method in the Employee
class above:

class Employee {
protected:
int idNum;
string frname, lname;
double salary;
double benefits;
public:
Employee(int id, string frnm, string lnm,
double sal, double benefits = 1000);
virtual double getSalary();
string getName();
int getId();
double getBenefit();
¥

Classes and OOP 109

This indicates that there may be some derived classes that
redefine that method in some way.

Then we could create a class called Contractor that returns some
fraction of the total salary. (The rest might go to his agency.)

The definition of that class shows that there is a new getSalary
method.

class Contractor:public Employee {
private:
double rate = 0.85;
public:
Contractor(int id, string frnm, string lnm,
double sal, double benefits = 1000);
double getSalary();

s
Then, the actual code for that method is somewhat different:

//reduce salary by “rate”
double Contractor::getSalary() {
return salary * rate;

}

While that intent of virtual was to signal that certain functions
may be redefined in derived classes, it is actually no longer
necessary: that contractor code will work just fine without it in
the current implementations of C++. The only difference is that
if you declare a function to be virtual, its final implementation
isn’t resolved until run-time, which may make the program run
slightly slower.

Pure Virtual Functions

You declare what is called a pure virtual function by following
the declaration with a statement that it equals zero:

virtual double getSalary() = 0;

Classes and OOP 110

This statement means that this function does not exist in this
base class but will be filled in in derived classes. In this case the
base class is now abstract and cannot have any instances created.

In other words, this function is a abstract function that itself
cannot be executed. You can’t create an instance of a class with
such an abstract function. You can only derive new classes from
it that fill in that function. Those you can instantiate.

It’s not likely that you’d create a abstract function and class out
of our Employee class, because it doesn’t do anything very
useful. It is more likely that you use these pure virtual functions
to create classes where all or nearly all of the functions are
abstract. For example, in Chapter 13, we create a DButton class
where the only function is abstract:

//an abstract button class
class DButton : public wxButton {
protected:

Builder* bld;

public:
DButton(..)
this->bld = bld;
Bind (wxEVT_BUTTON, &DButton::comd, this);

//abstract method to be completed in derived classes
virtual void comd(wxCommandEvent& event) =0;

And, in Chapter 23, we define the Bridger as an abstract class:

//abstract Bridge class

class Bridger {
//add data to the other side of the bridge
virtual void addData(Products* prod) = @;

1

Classes and OOP 111

Static class members

This Adder class doesn’t really have to be instantiated as we did
in this example. We could make these methods static and call
them directly.

class Adder {
public:
//static methods do not need a class instance
static double addNums(double x, double y) {
return x + y;
3
static double addNums(string x, double y) {
return stod(x) + y;
}
static double addNums(string x, string y) {
return stod(x) + stod(y);
}
static double addNums(double x, string y) {
return x + stod(y);
3
static double addNums(double x, double y, double z){
return x + y + + z;
3
3

To call these methods, we don’t have to create an instance of
Adder. Instead, we use the member-of symbol (: 3).

cout << Adder::addNums(12.1, 14) << endl;

cout << Adder::addNums("22.4", "1.008") << endl;
cout << Adder::addNums(123.4, "6.02") << endl;
cout << Adder::addNums(122.3,303.4,45.6) << endl;

Note that these static class members do not have access to any
instance variables the class may hold because they do not have a
hidden or visible this pointer to reach them. Static class methods
are useful for creating generally useful functions outside the
class: they are not members of class instances.

Classes and OOP 112

Friend declarations

Early on in the design of C++, it seemed as though you might
need to get at some of those private variables inside a class from
time to time. But, as it turns out, you just don’t need that feature.
However, the friend declaration remains in the language. You
can create a function outside a class and have that class declare
that function as a friend. In that case the function can read and
change those private variables. You can also declare a whole
other class as a friend and it, too, will have access to the class
that declared it a friend. This, of course, violates the whole idea
of data encapsulation, and it would mean that such function or
class would have to know exactly how data are represented in
the friending class. We don’t recommend this at all.

Constant classes

Suppose we consider our familiar Rectangle class for a moment:

class Rectangle {

private:
double width;
double height;

public:
Rectangle(double w, double h):width{w}, height{h}{}
void setWidth(double w){width = w;}
void setHeight(double h) {height=h; }
double getwidth() {return width;}
double getHeight() {return height;}
double getArea() {return width * height;}

1

You can use the const modifier to change values that go in and
out of this class. For example, you might want to make sure that
the area is returned as a constant:

double getArea() const {return width * height;}

Like many other such modifications, they may not often be that
significant.

Classes and OOP 113

But suppose you want to make the whole class constant!

const Rectangle rect{22,34};

Once the constructor has run and initialized the constant class,
any attempt to modify the member variables will fail because
they are now constant. But for this to work, all of the getter
member functions must be labeled const as well, because the
member private variables are const as well. So, for the output
statement to work:

cout << rect.getArea()<< << rect.getwidth()<<
" "<<rect.getHeight()<<endl;

the getters must all be constantized, and the setters might as well
be removed because they can’t work when the private variables
are now constants. So, we have to modify our class as follows:

//void setwWidth(double w){width = w;}

//void setHeight(double h) {height=h; }
double getwidth() const {return width;}

double getHeight() const {return height;}
double getArea() const {return width * height;}

Example Programs

e textRectangle.cpp — draws rectangle and square with
asterisks.

e Employee.cpp — Employee and derived classes

e EmployeeProto.cpp — Using prototypes for the classes.

e EmployeeHeaders folder — Using header files and
separate class files

e PublicEmployee.cpp — illustrates multiple inheritance.

o addNumsPoly.cpp — 5 overloaded methods in Adder

o EmployeeVirual.cpp

e PureVirtualEmployee.cpp

Classes and OOP 114

e staticPoly.cpp — 5 static methods in Adder
e constclass.cpp — constant Rectangle class

Pointers and Memory 115

10. Pointers and Memory

This chapter deals with two ways to allocate memory: the old,
common method used in C and early C++ and the newer smart
pointer system that was introduced in C++ 11 (2011).

As we noted in the previous chapter, you can create space for
new variables or arrays at compi time or at run time. In the first
case, if you create an array at compile time:

double bigArray [1'000'000]; //huge static array

The space for this array is allocated on the stack, the same
memory where computation takes place. This reserves a lot of
memory for the whole program’s execution time, when you may
only need it for a little while. Note that we use the apostrophe as
a digit separator to make it clear how large the number is. It has
no computation effect.

Instead, it is better to create the memory array in free memory,
often called the “heap.”

//create a dynamic array on the heap
double* pbig {new double [DIM]{}};

Now you can assign values to this array, using it just like any
other pointer:

double d =0;
for (size_t i=0; i< DIM; i++) {
pbig[i] = d++; //convert to a double

}

But when you are done with this memory space, it is up to you to
release it. This wouldn’t matter in a small trial program that runs
through and exits, because all memory will be released when the
exit occurs. But in many C++ and C programs request memory
and forget to release it, leading to a gradual increase in memory
usage until the system could run out of memory.

Pointers and Memory 116

So, it is up to you to use the delete method to release any
memory you request. In this example, you would release that
pbig array with

//release double array
delete [] pbig;

You could also create your memory using a vector when you
need it.

//create a dynamic array

vector <double *> dubbles;

for (size_t i=0; i< 1'000'000; i++) {
double* px = new double;
dubbles.push_back(px);

}

Here we actually are creating a set of pointers to double values,
as you can see when we print some out.
for (size_ t k=0; k<5; k++) {

cout << k<" "<< *dubbles[k]<<endl;

}

In this case, dubbles|K] is a pointer to the double precision
variable, so to print out that values, we print *dubbles[k].

Then, to release all those individual memory reservations, we
have to run through the whole vector and delete them:

//release memory from dynamic array
for (double* db:dubbles){
delete db;

}

Classes and destructors

However, it is more common that you might need to keep track
of memory and manage it within classes. We have already seen

Pointers and Memory 117

in detail how class constructors work. They initialize variables
and structures within each instance of a class.

However, when the program is done with a class, it calls that
class’s destructor. The destructor has the same name as the class,
but prefixed with a tilde (~). Again, if you have a short program
that runs through some code once and exits, you really don’t
care. All that memory will be released anyway.

But if you have several classes that acquire memory and should
release them when they are done, you need to provide a class
destructor method. If you recall our Employees class from he
previous chapter, it contains a vector, which itself contains an
array of pointer to Employee classes. You need to release all that
memory in the destructor. Here is that Employees class showing
that destructor:

class Employees {
private:
//contains an array of pointers to Employee objects
vector <Employee *> employees;
public:
//add a pointer to an Employee class to the vector
void addEmployee(Employee* emp) {
employees.push_back(emp);
}
//destructor releases memory
~Employees() {
for (Employee* emp:employees) {
delete emp; //release each instance

}
1

When is the destructor called?

The destructor is called whenever a class goes “out of scope,” so
no one could use it further. If you create a class and use it inside
a pair of braces, as soon as the program execution goes outside
those braces (usually a function method), the destructor is called
automatically.

Pointers and Memory 118

For example,

void mkadd() {
Employees empls;
empls.add(...);
}

Outside of those braces, empls does not exist, so the Employees
destructor is called and you need to delete any temporary
memory you may have acquired. If you don’t you may end up
with memory leaks.

Other uses for destructors

Any class that acquires system resources should release them
when the destructor is called. Obvious examples includes files. If
you open a file, the destructor should close it. If you have created
a temporary file, you should probably delete it here.

Smart Pointers

Smart pointers were added in 2011 and they manage themselves:
you don’t have to release any memory you allocate. These are
called unique_ptr’s and you can easily create them anywhere
you would create the older C-type pointers:

unique_ptr <Employee> empl =
make_unique <Employee>(id++, "Susan", "Sugar", 5000);

Essentially, this says to create a unique pointer to a block of
memory where it stores an instance of the Employee class. There
can only be one instance of each of these unique pointers, and
you can’t copy them as part of a function call. For example, if
empl were an ordinary pointer, you could add it to a vector like
this:

employees.push_back(empl);

Pointers and Memory 119

But since that would create a copy of the pointer, the compiler
won’t allow you to do this. You have two ways that do work,
though.

First, you could pass the actual class instance into the Employees
class and have it create the unique pointer:

void addEmployee(Employee emp) {
employees.push_back(make_unique<Employee> (emp));

}

Or, you could create the pointer in the calling program as we did
above and tell the compiler that you are going to move it into the
vector.

void addEmployee(unique_ptr<Employee> emp) {
employees.push_back(std::move(emp));

}

That way, there is no copying, and this works just fine. Either
way, when you later fetch that pointer to get the Employee
instance, it works just like an ordinary pointer:

//get the pointer to the i-th Employee
//and return the actual Employee instance
Employee get(int i) {

Employee emp = *employees[i];

return emp;

While getting used to not accidentally copying pointers takes a
bit of time, this is a far safer way to write bigger programs and
avoid memory leaks.

Pointers and Memory 120

Example Code on GitHub

e Destruct.cpp — shows creating pointers and destroying
them

e EmployeePtr.cpp — passes a class instance in to avoid
copying a unique pointer

e EmployeeUniquMove — shows how to move a unique
pointer

Using linked lists 121

11. Using linked lists

Linked lists are an important part of building useful software
projects. While you can consider them as a kind of arrays, they
are considerably more versatile than that. You can use them to
represent sparse arrays or matrices, cells in a spreadsheet, lists of
commands to be executed or even lists of open windows in a
user interface. Just as important, it is very easy to insert or delete
members of a list without a lot of memory manipulation.

Definitions

A linked list is simply a linear chain of elements, or nodes.
Nodes are usually represented by instances of a C++ class. One
node is called the kead and forms the beginning of the list. Not
surprisingly, the last element is generally called the tail. Each
node consists of a pointer to the next node in the list, starting
with the head and continuing up to the tail. Such a list is called a
singly linked list as shown in the Figure below.

+ —» NULL
Data1 Data2 Data3

In a doubly linked list, there are also pointers to the previous
element, so you can traverse the list in either direction.

—» NULL
Data1 Data2 Data3
NULL < ”

Using linked lists 122

Usually, the last element has a next point with a Null value.
Linked lists are also possible in Python, although they use
references rather than pointers and may not be as fast.

In our linked list, we create a Cell class that holds those two
pointers as well as a pointer to some kind of data class. In this
example, we’ll just use our same old Employee class:

class Cell {
private:
Employee* data;
Cell* next{NULL};
Cell* prev{NULL};
public:
//constructor uses Employee pointer
Cell(Employee* emp):data{emp}{}
Employee* getData() {return data;} //return employee
//add a cell to the end of the chain
void addNext(Cell* ecell) {
next = ecell;

}

The linked list class itself manages the head and tail pointers and
has the methods for adding cells to the list:

//constructs the Linked Llist
class LinkedList{

private:

Cell* head; //start of list

Cell* tail; //last member of List
public:

LinkedList(Cell* ecell){
head = ecell;
tail = ecell;

}

//add cell to end of list
void addCell (Cell* ecell) {
tail->addNext(ecell);
auto oldtail = tail;

tail = ecell;
ecell->addPrev(oldtail);

Using linked lists 123

As you can see from the addCell method, it calls the Cell’s
addNext method that adds one more cell to the tail of the chain.

Creating the list

You create the linked list, by creating Cells and adding them to
the LinkedList object. First we create the Employee pointer:
int id = 1;
//create new Employee pointer
Employee* empl = new Employee(id++,

"Susan", "Sugar", 5000);

Then we create a new Cell for it:

//create a new Cell
Cell* celll = new Cell(empl);

And finally, we use that Cell pointer to create the LinkedList
class:

//create the linked list with one cell in it.
LinkedList* links = new LinkedList(celll);

We can create and add the rest of the cells in single statements:

//create remaining Employees and Cells in one statement
links->addCell(new Cell(new Employee(id++,
"Sarah", "Smythe", 2000)));
links->addCell(new Cell(new Employee(id++,
"Billy", "Bob", 1000)));
links->addCell(new Cell(new Employee(id++,
"Arnold", "Stang", 800)));

Traversing the list

Then, it is really easy to move through a linked list: each cell has
a pointer to the next cell in the chain, and the last cell points to
NULL, indicating that you are done. In order to keep that code
from being part of the main program, the LinkList class returns

Using linked lists 124

an iterator to the list. That iterator, like those suggested in Design
Patterns has only a hasMore and a getNext method. We will
discuss the C++ iterator style later.

But to run through the list you need only get the iterator from the
LinkedList and use it:

fwdIter* fwd = links->getFwdIter(); //get the iterator
while (fwd->hasMore()) { //get the elements
Cell* cell = fwd->getNext();
Employee* emp = cell->getData(); //get data in cell
cout << emp->getName() << endl; //and print it.

}

The fwdlIter class checks the cells to see if you have reached the
end:

class fwdIter{
protected:
Cell* cell;

public:
fwdIter(Cell* c) {
cell = c; //save the starting cell
}

bool hasMore() {
return cell != NULL; //no more if NULL

Cell* getNext() {
auto retCell = cell; //save this cell
cell = cell->getNext(); //get the next(or NULL)
return retCell; //return current cell

1

The tricky part of this little iterator is that it returns the current
cell and then fetches the next one, which may be NULL. Then
when the program next calls hasMore, it can return true as long
is the new current cell is not NULL.

Using linked lists 125

The reverse iterator

You can derive the reverse iterator from the forward iterator. This
derived class only contains a new getNext method: the rest is the
same:

//iterator to move backward from end of Llist
class revIter: public fwdIter {
public:

reviter(Cell* c) :fwdIter(c){

}
Cell* getNext() {

auto retCell = cell;
cell = cell->getPrev(); //get the previous cell
return retCell;

1

So, to print out the linked list from back to front, we get the
reverse iterator from the LinkedList and use it just like the
forward one:

revIiter* rev = links->getRevIter();

while (rev->hasMore()) {
Cell* cell = rev->getNext(); //get the prior cell
Employee* emp = cell->getData(); //and its data
cout << emp->getName() << endl; //and print it out

Inserting a new cell in the chain

You can insert a cell without moving any arrays around when
you are using linked lists. You just have to switch the pointers so
that the old left cell points to the new cell and the new cell points
to the right cell. This insertCell method Is part of our LinkedList
class:

//insert cell after cleft

void insertCell(Cell* cleft, Cell* cnew) {
Cell* cright = cleft->getNext(); //cell to right
cleft->setNext(cnew); //set pointer to new cell
cnew->setNext(cright); //set right pointer in cnew

Using linked lists 126

cright->setPrev(cnew); //set prev pointer in cright
cnew->setPrev(cleft); //set prev pointer in cnew

The copy constructor

Now, suppose you want to create a new instance of a Cell class.
We could use one of the ones above and use it to make a new
one:

//illustrates copy constructor
Cell c = *cell2; //get a cell from above
Cell newCell = Cell(c); //use copy cons. to make new cell

So, what exactly is in this newCell? It turns out that this
heretofore unmentioned constructor copies all of the variables
inside that instance of the class into the new one. Let’s try this
out:

Employee* cdat = newCell.getData();
cout << newCell.getData()->getName() << endl;

Amazingly, this works just fine, and in this case prints out the
name “Bonnie Ocean.” (Her middle name must be Lyzoverthe!)
So, this means that all the pointers in that first cell are copied
into the new cell. This might not be such a great plan, because
those pointers might very well get deleted by a destructor,
leaving this new cell with one or more invalid pointers.

Every C++ class has a hidden copy constructor, and all it does is
copy all the fields, whether you want that or not. If such a
copied class might have such pointers lying about, you can
override the copy constructor and set them to NULL like this:

//copy constructor
Cell(Cell &cnew) {

data = NULL;
next = NULL;
prev = NULL;

Using linked lists 127

The syntax of a copy constructor is just the class name and a
reference to the new cell name. Here is where you could null out
those pointers to prevent them being used where they may fail.

Is this trip really necessary?

Well, “this is all very well,” you might say, “but I never use copy
constructors.” Well C++ uses them under the covers a lot, so
don’t be too sure.

Suppose you want to pass an instance of the Cell class to a
function. (Not a pointer, now, a reference to the actual function.)
You might want to carry out some operation there in that
function. But for now, we’ll just return the name of the
Employee:

string names(Cell c) {
Employee* emp = c.getData(); //ptr to Employee

Employee e = *emp; //actual Employee
nm = e.getName(); //get the name
return nm; //and return it.

This looks like it should work, and it will if you haven’t
modified the copy constructor as we did above, because such
function calls copy the class instance. And of course, they use
the copy constructor! If you did modify the copy constructor, the
Employee pointer will be NULL and you won’t get any value for
names. Here is an example of how you might handle that:

string names(Cell c) {
string nm = "no data";
Employee* emp = c.getData();
if (emp != NULL) {
Employee e = *emp;
nm = e.getName();

}

return nm;

Using linked lists 128

However, if you have modified the copy constructor, emp will
always be null.

So, the copy constructor can get you even when you aren’t
looking for it. Of course, the simplest way around this is to use
pointers to the classes, and everything will work, since no copy
constructor is ever called.

Deleting the copy constructor

One way to make sure this does not happen is to delete the copy
constructor instead of modifying it. Here is how to do this for the
Cell object:

Cell(Cell &cnew) = delete;

Summary

Linked lists are an extremely efficient way of organizing sparse
lists of data. You can run through them sequentially very rapidly
and it is fast and easy to insert or delete an element without
moving anything around in memory. The only disadvantage is
that searching them is not terribly efficient. And, of course, it is
up to you to manage the pointers and memory that you allocate.
You also have to be careful of the cell object you use to contain
list elements and be sure that you don’t misuse copy constructors
in the process.

Example Code
e LinkedList.cpp -- builds a doubly linked list of
Employees

e Copycon.cpp — shows copy constructor and how it could
fail

Templates 129

12. Templates

Templates don’t have any close analogy in Python: they are
pretty much unique to C++. Essentially templates are a special
kind of macro that allows you to write functions and classes
without requiring a specific type of data. Instead, you create a
template type which the compiler fills in, generating the actual
code for each type you require. Templates are deeply entrenched
in the C++ Standard Template Library, and you sometimes use
them without even realizing it.

Template functions

For example, the swap function is really a template function,
because you can use it two swap variables of any type. Here we
swap two doubles:

double a =123;

double b = 456;

swap(a,b);

cout << "a="<< a <<" b=" << b << endl;

and here we swap two strings:

string fruitl "banana";

string fruit2 = "orange";

swap(fruitl, fruit2);

cout << "fruitl="<< fruitl <<" fruit2="<<fruit2<<endl;

The result of this little program is, of course:

a=456 b=123
fruitl=orange fruit2=banana

What is going on under the covers is that the swap function is
really defined as a simple template. We name it mySwap so it
doesn’t collide with the existing std::swap template.

Templates 130

//our own swap template function
template <typename myType>
void mySwap(myType a, myType b) {
myType temp = a;
a = b;
b = temp;

It is common in C++ programs to just use the symbol T for the
type variable. Sometimes those who are new to C++ find this
confusing, so we started with myType above, but the actual code
is generally more like:

//our own swap template function
template <typename T>
void mySwap(T a, T b) {

T temp = a;
a = b;
b = temp;

}

You can use any type name here that you like, but T is
commonly used.

Class templates

Template functions occur frequently in C++’s template library
but are used somewhat less frequently in user code than classes
that utilize templates. So, extending an example in
Tutorialspoint.com, let’s consider how we might build a Stack
class.

Stacks are entities much like vectors, except that they are mostly
used to push on and pop off values. So, we will use a class
template to create a stack from a vector. When we push a value
onto the stack, it is the top item, and the first one to be removed.
Unlike the vector class’s behavior our pop operation actually
returns that value. We really only need to find out if there are any
remaining values on the stack, and for this we’ll create a
hasValues() method which is simply the negation of the vector’s
empty() method.

Templates 131

When you create a template class, you start by declaring the
place holders for the types it will use. In this case, there is only
one:

template <class T>

Note that while we commonly use the keyword class here, you
could just as well have used typename. They are
interchangeable. Our class is very simple, being made up of just
the three methods:

push()

pop(), and
hasValues()

The class starts as shown below:

class Stack {
private:
vector<T> values; //type specified here

¥
The vector is of type T, where T can be any simple type or any
class instance. The push and hasData methods are equally

simple:

public:
void push(T val){ //push onto stack
values.push_back(val);

}

//return true if there are any values Lleft
bool hasValues() {
return !values.empty();

}

The only real work we have to do is to write a form of pop that
returns the top element rather than discarding it:

//pop a value from the stack
T pop() {
if (hasvalues()) {
//save last value
T popval = values[values.size()-1];

Templates 132

values.pop_back(); //and remove it
return popval;

}

else
return NULL;

}

Note that the pop method returns a value of type T. Our calling
program is very simple. We simply specify the type the Stack
will handle and everything else is the same as usual:

int main() {
Stack<int> stack; //create stack
stack.push(20); //push on 3 values
stack.push(42);
stack.push(91);

//pop off one at a time and print it
do {

cout << stack.pop()< < endl;
} while (stack.hasValues());

return 0;

}

The resulting output, is the list of numbers in reverse order as
they come off the stack:

91
42
20

Class templates of classes

Of course, you aren’t limited to simple types in creating
templates: you can use any class instances you want. For a
simple, but trivial, example let’s consider an area calculating
template class called DoArea. It can take any class which has a
getArea() method.

So here is our Rectangle class, much like ones we’ve written
before.

Templates 133

//Rectangle class

class Rectangle {

private:
double width;
double height;

public:
//constructor
Rectangle(double w, double h):width{w},height{h}{
}
//default constructor
Rectangle(){}
double area() {

return width * height;

}

¥

It is important to note that classes to be used in templates must
have a default constructor: that is a constructor that has no
arguments like the Rectangle() constructor above.

Similarly, we can write a Semicircle class that returns its area:

/2.

class Semicircle {
private:
double radius=0;
public:
//constructor
Semicircle(double rad):radius{rad} {

//default constructor
Semicircle(){}
double area() {

return radius * radius * pi/2;
}

1

The math constant 7 is available in C++ version 20 along with
quite a lot of others, as long as you include the following in the
program header.

#include <numbers>
using namespace std::numbers;

Templates 134

A link to the complete list of math symbols is given in the
References below.

With those classes in mind, here’s how we build a template to
return areas:

//gets the area of any class
//with a getArea method
template <class T>

class DoArea {

private:
T shape ;

public:
DoArea (T tshape):shape{tshape} {
}

double getArea() {
return shape.area();

}
1

So, to call this template class method we create instances of the
two classes:

//create 2 shapes

Rectangle rect = Rectangle(5,6);
Semicircle semi = Semicircle(7);

Then we can use the template to get the area:

//get area of semicircle
DoArea doarea = DoArea(semi);
cout << "Semicircle "<< doarea.getArea() << endl;

Or, in a single statement:

//get area of rectangle
cout << "Rectangle "<< DoArea(rect).getArea() << endl;

Templates 135

References

1. https://www.tutorialspoint.com/cplusplus/

2. cpp_templates.htm

3. https://en.cppreference.com/w/cpp/symbol _index/
numbers

Example Code

e Swapper.cpp — swap function

e Stack.cpp — creates stack from vector

e shapes.cpp — Template for area of rectangle and
semicircle

https://www.tutorialspoint.com/cplusplus/

Templates 136

Creating user interfaces 137

13. Creating user interfaces

In Python, you can create nice looking user interfaces using the
provided tkinter toolkit, or one of the external products like
PyQt or wxPython. Of these, only wxPython has a C++
equivalent, because they are built on the same code base. If you
have looked at wxPython, you will find that it is much like
tkinter in the objects it creates and the layout managers it uses.

The C++ version, called wxWidgets, is well designed and easy
to use, and gives you a way to create buttons, labels, listboxes,
tables and entry fields, and interact with the user. While
wxWidgets can run on all three major platforms: Windows,
Macintosh and Linux, it works best in Windows using Visual
Studio Community Edition. Installation of wxWidgets amounts
to downloading code libraries and setting a number of
environment variables. We describe this installation at the end of
this chapter. While it has been reported that you can also install it
to use the CLion IDE, we haven’t tried it. However, there is a
reference to that article at the end of the chapter.

Most documentation for wxWidgets is online, and you can
usually find the answer to how to do something pretty quickly.
Note that there is a web site containing a complete description of
every widget in the package, and all of each widget’s methods,
but with little or no example code. A search for the widget name
followed by “example code” will usually give you what you
want. Two of the authors of wxWidgets wrote a book on the
system in 2008, which is still available for around $50, although
used copies are also available. The problem is that the
wxWidgets system has evolved significantly since that yeoman
chore was completed, notably in event handling, and the book is
no longer that useful.

Creating user interfaces 138

A wxPython example

Let’s start by looking at the rather simple code wxPython
requires to display a window with a title in the title bar. Like
tkinter, you start by setting up the window and then launching
the window event system by calling the app.MainLoop()
method.

Import the wxPython package.
import wx

app = wx.App() # Create an application object.

frm = wx.Frame(None, title="Hello World") # Then a frame.
frm.SetInitialSize((250, 200)) #et the size

frm.Show() # Show it.

Start the event loop.
app.MainLoop()

This will create a simple 250 x 200 pixel window with a title in
the title bar.

¥ " Hello World — O X

Figure 13-1 - Python window with title bar

You can launch a similar window in C++ using the wxWidgets
toolkit:

Creating user interfaces 139

#ifndef WX_PRECOMP
#include <wx/wx.h>
#include "wx/app.h"
ftendif

//create the app
class MyApp : public wxApp

public:
bool OnInit() { //called to start the UI
wxFrame* frame = //create the frame
new wxFrame(NULL, wxID_ANY, "Hello World");
frame->SetSize(250, 200); //set a size
frame->Show(true); //and show it
return true;
}
¥

//launch the app
wWxIMPLEMENT_APP(MyApp);

Note that the very last line is a macro that actually starts the
window and event code running. The identical window this code
generates is shown in Figure 13-2.

B ' Hello World — Od X

Figure 13-2 --wxWidgets window with title bar

In both cases we create a frame with a title for the title bar, set
the size and launch the app. In the C++ case, you create an app

Creating user interfaces 140

derived from wxApp, that has an Onlnit method that gets called
from the wxIMPLEMENT APP macro. This kicks off the event
processing code.

Strings in wxWidgets

Nearly all of the methods in the wxWidgets objects require that
you call them with a string converted to a wxString object. The
wxString behaves mostly like any other string, but it can handle
Unicode characters as well. So, you will see calls to many
methods converting your string to a wxString like this one:

wxStaticText* tx = new wxStaticText(panel, wxID_ANY,
wxString("Greetings"), wxPoint(40,60));

There is also a shorter spelling of this method as a macro called
wxT():

wxStaticText* tx = new wxStaticText(panel, wxID_ANY,
wxT("Greetings"), wxPoint(40,60));

They work the same way. Likewise, reading entry fields returns a
wxString rather than a C++ string, but these widgets provide a
conversion method: ToStdString(), like this one:

string stl = numl->GetLineText(0).ToStdString();

Writing basic wxWidgets code

As you can see, creating a window amounts to creating a frame.
But, if we want to put components inside that frame, we have to
create a wxPanel as well. While you can place some widgets
directly in a wxFrame, you can’t position them at all. And
further, if they are inside a wxPanel, you can tab between them
using your keyboard’s Tab key.

So, in this next simple example, we create a panel and put a label
inside it. Note, however, that unlike other GUI systems, labels

Creating user interfaces 141

are called wxStaticText objects. So, we create a frame, put a
panel inside it and place the label inside that.

class MyApp : public wxApp {
public:
bool OnInit() {
wxFrame* frame = new wxFrame(NULL, wxID_ANY,
"Hello World");
frame->SetSize (250, 200);
wxPanel* panel = new wxPanel(frame);

wxStaticText* tx = new wxStaticText(panel,
wxID_ANY,
wxString("Greetings"),
wxPoint(40,60));

frame->Show(true);
return true;

1

Note that we don’t “add” the label to the panel. We just say that
the parent window of the wxStaticText control is the panel. Note
also, that in this first such case, we specify the coordinates of
that label right in the constructor, as a wxPoint object, with
the(40, 60) coordinates specified. The resulting window looks
like this:

B " Hello World — Od X

Greetings

Figure 13-3 --Static text positioned at (40,60)

Creating user interfaces 142

With the “Greetings: label not at (40,60).

Sizers

In Python’s tkinter, you can arrange your visual objects using
Layout Managers. In wxWidgets, these are called sizers, but
have much the same functions. Sizers are pretty simple to use,
and there are just a few of them.

e wxBoxSizer — a vertical or horizontal layout with one
object per row or column.

e wxStaticBoxSizer — includes a labelled frame around the
box region.

o wxGridSizer — evenly sized grid rows and columns

o wxFlexGridSizer — sizes or grid cells are adjusted to fit
your widgets

o wxGridBagSizer — flexible grid size and you can specify
the grid position directly.

Include Files

Most of the wxWidgets have their own include files, all under
the wx directory:

#include “wx/wx.h” - for base objects

#include “wx/app.h” - for all apps

#include “wx/button.h” - for buttons

#include "wx/sizer.h” - for most of the sizers
#include "wx/gbsizer.h"™ - for the GridBagSizer
#include “wx/treectrl.h™ - for the TreeCtrl

The Box Sizer

The most common layout tool is the wxBoxSizer. You generally
create a panel and then add a sizer to it like this:

//create the Box sizer
wxBoxSizer* vbox = new wxBoxSizer(wxVERTICAL);
panel->SetSizer(vbox);

Creating user interfaces 143

With the BoxSizer, you can select either vertical or horizontal
orientation. Each item you add to the sizer is thus either in a new
row (WxVERTICAL) or a new column (wxHORIZONTAL). You
can begin right at the top for the vertical sizer, or you can add
some space first:

//create the text label
wxStaticText* tx = new wxStaticText(panel, wxID_ANY,
wxString("Greetings"));
vbox->AddSpacer(50);
vbox->Add(tx); //and add it to the box

or, you can add the widget with center or right positioning. For
example,

vbox->Add(tx,

0, //not stretchable
WXALIGN_CENTER, //alignment
10); //border width

These are both shown in .

B " Hello World - O ¥ ' Hello World - O

Greetings Greetings

Figure 13-4 Box sizer without(left) and with(right) wxALIGN_CENTER

Splitting up the main app

While the basic example code provided with wxWidgets uses
MyApp as the name of the app that launches the program, we
usually call it Builder. Then, we recommend splitting up the
class to a header declaration.

Creating user interfaces 144

class Builder : public wxApp {
public:
bool OnInit();
¥
And puting the code for Onlnit below the

wxIMPLEMENT_APP(Builder);

In this case, that code simply builds the window just as we did
above:

bool Builder::0OnInit() {
wxFrame* frame = new wxFrame(NULL, wxID_ANY,
"Hello World");
frame->SetSize (250, 200);
wxPanel* panel = new wxPanel(frame);

//create the Box sizer
wxBoxSizer* vbox = new wxBoxSizer(wxVERTICAL);
panel->SetSizer(vbox);

//create the text label

wxStaticText* tx = new wxStaticText(panel, wxID_ANY,
wxString("Greetings"));

vbox->AddSpacer(50);

vbox->Add(tx); //and add it to the box

frame->Show(true);

return true;

More on labels

The text size and color are adjustable, of course, and we have
found it convenient to create a derived BlueLabel class we can
use throughout. In this class, we make the color blue and the font
size a bit bigger, 12 point instead of the default 10 point.

Colors in wxWidgets can be represented as 3 integers between 0
and 255 for the red, green and blue base colors. So, to change the
color of a label, you could write:

SetForegroundColour(wxColour(9, 0, 200));

Creating user interfaces 145

Or for most common colors, you can just use a quoted string

SetForegroundColour("blue");
Let’s create our BlueLabel class as a header and a body that we

can put in any project we want. The header is:

class Bluelabel : public wxStaticText {
public:
BlueLabel(wxPanel* parent, int id,
const wxString& label);

1

And the body in the cpp file is just:
//----A derived class for blue labels-------

BluelLabel: :BlueLabel(wxPanel* parent, int id,
const wxString& label) :
wxStaticText(parent, id, label) {
SetForegroundColour("blue");
wxFont font = wxFont(10,
WXFONTFAMILY_DEFAULT, wxFONTSTYLE_NORMAL,
WXFONTWEIGHT_NORMAL, FALSE, "");

this->SetFont(font);

Entry fields and buttons
Now, let’s write just a slightly more complicated window that

allows you to enter your name, click on a button and have your
name echoed back to you.

Our new window will have 4 lines in a vertical BoxSizer:

o atitle BlueLabel

e an entry field

e a “Say hi” button

e a BlueLabel where the greeting is displayed

Creating user interfaces 146

In this program entry fields are called wxTextCtrl widgets, and
buttons are called wxButton widgets.

So setting up the layout should be very simple. First, we declare
this widgets as class instance variables:

class Builder : public wxApp {
private:
BluelLabel* title;
wxTextCtrl* name;
wxButton* butn;
BlueLabel* greeting;

And then, in the Builder Onlnit() method, we place them in a
vertical BoxSixer:

vbox->AddSpacer(20);
vbox->Add(title, @, wxALIGN_CENTER, 10);

name = new wxTextCtrl(panel, wxID_ANY);
vbox->Add(name, @, wxALIGN_CENTER, 10);

vbox->AddSpacer(10);
butn = new wxButton(panel, wxID_ANY, "Say hi");
vbox->Add(butn, ©, wxALIGN_CENTER, 10);

vbox->AddSpacer(10);

greeting = new Bluelabel(panel,
wxID_ANY,"");

vbox->Add(greeting, @, wxALIGN_CENTER , 10);

Note that the message label at the bottom is filled with blanks so
it will more or less stay centered for various length names. The
window we have created looks like Figure 13-5.

Creating user interfaces 147

B'Sayhitome — O X

Enter your name

Say hi

Figure 13-5 Entry field, push button and blank label

But what about the button? What does it do and how do we
handle it?

Events in wxWidgets

Every operation that causes a change in a window object
generates an event. The obvious ones are button clicks, listbox
clicks, checkbox clicks and so forth. But there are also events
when the text changes in an entry field, or when scrollbars move,
and so forth. Every event inherits from the base wxEvent class,
and each such event contains a pointer and ID of the widget that
generated the event, so you can distinguish identical events from
different sources. Note that in scrolling through the copious
online wxWidgets documentation, you will also find references
to the older event table approach. These tables are constructed at
compile time, while the later Bind event handling is more
flexible as it can be changed while the program is running. We
will discuss only the later, and more flexible, Bind method.

For each event you want to intercept, you must bind the event to
a method in an existing instance of the class. To simplify this,
you usually bind to a method in the Builder class, and let that
method call other classes if it needs to.

For our single “Say hi” button above this amounts to issuing a
single Bind call like this one:

Creating user interfaces 148

//Now add in button click event
butn->Bind (wxEVT_BUTTON, &Builder::0nClick, this);

What this Bind call days is that if the wxButton named butn
issues a wxEVT_BUTTON event, then that button click should
call the OnClick method in the Builder class.

Of course, we have to declare the OnClick method in the header
section:

public:
bool OnInit();
void OnClick(wxCommandEvent& event);

And in the actual OnCLick method, we just fetch the text string
from the name field and prepend a “Hi” to it and put it in the
greeting label.

void Builder::0nClick(wxCommandEvent& event) {
//get the text and convert it to a string
string text = name->GetLineText(0).ToStdString();
string grtext = "Hi " + text; //prepend "Hi"
if (text == "Jim") grtext += " boy!";
//put result in greeting
greeting->SetLabelText(grtext);

}

In honor of Robert Heinlein, if the name is “Jim” you get a
special revised greeting.

B'Sayhitome — [m] x B'Sayhitome — [m] X
Enter your name Enter your name
Hi Sarah Hi Jim boy!

Figure 13-6 - Greeting to Sarah and to Jim

Creating user interfaces 149

Adding two numbers together
This example appears at first to be quite similar to the previous
one, However, we will use it to show you several new concepts:

o The GridBag sizer

e Buttons and the Command design pattern
e Formatting numbers in a label

e A virtual function

Here is the user interface we have constructed:

B ' Add numbers — O X

Add 2 numbers

First num:

Add Clear

The Sum

Figure 13-7 - Add 2 numbers using GridBag layout sizer

The GridBag Sizer

You create a GridBag sizer as a grid of rows and columns. It
doesn’t matter if you specify more rows and columns than you
end up using: only ones that are populated will show in the
window. Here we first create a 10x10 grid but only end up using
6 in each direction:

wxGridBagSizer* gbs = new wxGridBagSizer(10, 10);
panel->SetSizer(gbs);

Now, our grid looks like this:

Creating user interfaces 150

0 1 2 3
0
1 Add 2 numbers
2 | First num Entry field numl
3 | Second num [Entry field num?2
4 Add Clear
5 | The Sum |

Note that the text in row 1 begins in column 1. We achieve this
using the wxGBSpan method that specifies the starting row and
the number of columns:

BluelLabel* topTitle =
new BluelLabel(panel, wxID_ANY,
wxT("Add 2 numbers"));
gbs->Add(topTitle,
wxGBPosition(1, 1), wxGBSpan(1, 3));

The same approach applies to the two rows of labels and entry
fields:

//first label and entry field
BluelLabel* lineLabel =
new BluelLabel(panel, wxID_ANY, " First num: "),
gbs->Add(lineLabel, wxGBPosition(2, @));

numl = new wxTextCtrl(panel, wxID_ANY, "",
wxDefaultPosition, wxSize(100, 30));
gbs->Add(this->numl, wxGBPosition(2, 1),
wxGBSpan(1, 2));

//second label and entry field
BluelLabel* lineLabel2 =
new BluelLabel(panel, wxID_ANY,
" Second num: ")
gbs->Add(lineLabel2, wxGBPosition(3, 0));

num2 = new wxTextCtrl(panel, wxID_ANY, "",
wxDefaultPosition, wxSize(100, 30));
gbs->Add(num2, wxGBPosition(3, 1), wxGBSpan(1l, 2));

Creating user interfaces 151

The Add and Clear buttons are each centered in two columns: 0-
1 and 2-3:

// Add button
AddButton* addButton = new AddButton(panel,
wxID_ANY, this, this);
gbs->Add(addButton, wxGBPosition(4, @),
wxGBSpan(1, 2), wxALIGN_CENTER_HORIZONTAL);

// Clear button
ClearButton* clearButton =
new ClearButton(panel, wxID_ANY, this, this);

wxSizerItem* obj = gbs->Add(clearButton,
wxGBPosition(4, 2),
wxGBSpan(1, 2),
WXALIGN_LEFT);

And, finally, the Sum label at the bottom begins in column 1,
with nothing in column0.

// sum label
sumLbl = new BluelLabel(panel, wxID_ANY, "The Sum ");
gbs->Add(sumLbl, wxGBPosition(5, 1));

The Add and Clear buttons

But what are those Add and Clear buttons? They clearly are
derived from wxButton, but why did we do that? Let’s start with
the code in the Builder that carries out the Addition and the
Clearing of the form:

// This is the Add button click event

void Builder::addClicked(wxCommandEvent& event) {
string stl = numl->GetLineText(0).ToStdString();
string st2 = num2->GetLineText(0).ToStdString();

double sum = stod(stl) + stod(st2);
string st3 = "Sum is: " + format("{:5g}", sum);
sumLbl->SetLabel(st3);

Creating user interfaces 152

// Clear button click event

void Builder::clearClicked(wxCommandEvent& event) {
numl->SetLabel("");
num2->SetLabel("");
sumLbl->SetLabel("Sum is:");

}
Note that when you fetch text from a wxTextCtrl entry field, the

method assumes that there may be several lines of text in the
window, and you are asking for the first line by GetLineText(0)
and converting from a wxString to a string with the
ToStdString() method.

So, in the addClicked method, you fetch each entry as a string,
and then use the C conversion method stod (string to double) to
produce a number you can add to another.

And, in the clearClicked method, you simply set the contents of
the two entry fields and the Sum label to a zero length string.
Note that these SetLabel methods will accept a C++ string and
automatically promote it to a wxString automatically.

Command Buttons

While for simple programs like this one, it is not uncommon to
Bind the click event to the two click event methods above, there
is a more general way to handle this by creating a Command
Button. In this case, the button itself processes the click event
and calls the click event function in the Builder, or wherever else
it might reside.

We start by creating a basic DButton abstract class that calls an
empty comd method.

Creating user interfaces 153

class DButton : public wxButton {
protected:
Builder* bld;

public:
DButton(wxPanel* panel, int id,
const std::string label,
Builder* bld, wxApp* app) :
wxButton(panel, id,
wxString: :wxString(label), wxDefaultPosition,

wxDefaultSize)
{

this->bld = bld;

Bind (wxEVT_BUTTON, &DButton::comd, this);
}

//abstract method to be completed in derived classes
virtual void comd(wxCommandEvent& event) =0;

1

So, as you can see, the DButton constructor Binds the button
event to the comd method there in the same class. This comd
method is empty and has no code. But note that the method is
labelled as virtual and set to zero. This means that this method
must be overridden by methods in derived classes. And that is
exactly what we do with these two buttons, derived from
DButton.

// causes the addition
class AddButton : public DButton {
public:
AddButton(wxPanel* panel, int id,
Builder* bld, wxApp* app) :
DButton(panel, id, string("Add"), bld, app) {}

void comd(wxCommandEvent& event) {
bld->addClicked(event);

}
1
Here the add button has comd method which calls the

addClicked method in the Builder class. Note that these derived
classes do not need to have a Bind call, because it is in the base

Creating user interfaces 154

DButton class. This is true, of course for the Clear button as
well:

//clears the entry fields and sum labell
class ClearButton : public DButton {
public:
ClearButton(wxPanel* panel, int id,
Builder* bld, wxApp* app) :
DButton(panel, id, "Clear", bld, app) {}

void comd(wxCommandEvent& event) {
bld->clearClicked(event);

}
1

This approach is an example of the Command Design Pattern,
where the widget itself calls the function that does the
processing. And if you move the addClicked and clearClicked
methods to another class called a Mediator, that is an example of
the Mediator Design Pattern, which can handle all the
interactions among GUI widgets. We’ll see it used in code in
following chapters. And of course, the Command pattern can
apply to menu clicks, checkbox and Radiobutton clicks and even
keystrokes in an entry field, so it is quite general.

Menus

Creating menus in a wxWidgets window is really very simple.
The menu system is made up of a wxMenuBar along the top,
with wxMenu objects making up the top line entries. You can
add as many wxMenultems under each wxMenu object as you
want. A simple example might be one that had two Menu
objects, each with one or more menu entries under it.

File Help
Hello | About
Open

Clear

Exit

Creating user interfaces 155

The actual program is shown in Figure 13-8:

B'Sayhitome — O X
File Help

Enter your name

Figure 13-8 - Menu display of HiThere program

Whiile Menultems are much like Buttons in how they respond to
events, programming of them is a little different. Every menu
item must have a unique ID. While there are precoded Stock
Items[5] for most common menu actions, you will need to create
your own frequently once you get beyond wxHELP and
wxEXIT. There are over 70 predefined stock symbols, but they
aren’t terribly useful since you can make a set of numbers
yourself using the enum approach described next.

For this example program, we created a little enumerated list of
constants that can be used as Menultem IDs.

enum menuKeys {mkHELLO, mkOPEN, mkHi, mkCLEAR};

These keys start at zero unless you specify a specific value for
one or more of them.

Using these, we can create the entire menu from the menus and
menu items.

//Create a File menu on the menu bar
wxMenu* menuFile = new wxMenu;

Creating user interfaces 156

menuFile->Append(mkHELLO, "&Hello...\tCtrl+H",
"Help string shown in status bar for this menu item");

menuFile->Append(mkOPEN, "&0Open");
menuFile->Append(mkCLEAR, "&Clear");
menuFile->AppendSeparator();
menuFile->Append(wxID_EXIT, "E&xit");

//create a Help menu
wxMenu* menuHelp = new wxMenu;
menuHelp->Append (wxID_ABOUT);

//add the Menus to the MenuBar

wxMenuBar* menuBar = new wxMenuBar;
menuBar->Append(menuFile, "&File");
menuBar->Append(menuHelp, "&Help");

frame->SetMenuBar(menuBar);

Note that the Append method actually creates a wxMenultem
directly. You can also do this in two steps, which might be useful
if you need to modify the menu item.

wxMenuItem* mquit = new wxMenuItem(menuFile,
wxID_EXIT, wxT("E&xit\tCtrl+X"));
menuFile->Append(mquit);

Note that the About menu does not have text provided, because
the Stock Item table has “About” as the standard label for

wxID_ ABOUT. By contrast, we did provide a text label for
wxID_EXIT, because the default label in the Stock Items table is
“Quit” rather than the expected “Exit.”

Shortcuts and accelerators

For every Menultem, you can pick an accelerator character by
preceding it with an ampersand (&) in the label. So, for example
to exit from the program you would hold down Alt and then
select F and then X.

You can also pick a shortcut character, as we do with the Hello
menu item. Pressing Ctrl and H together executes the Hello

Creating user interfaces 157

menu item directly. You can precede any character with Shift, Alt
or Ctrl to create these shortcut characters.

Radio or check menuitems

By adding one of the flags ITEM CHECK or wxITEM RADIO,
you can turn any menu item into an item with a radio button or
checkbox. These are checked or unchecked each time you select
them, and you can check them in your code using the isChecked
method.

Binding Menultems

Binding Menultems to action routines is slightly different than
for Buttons and the like. The Bind methods all require that you
refer to that menu item’s ID. So, the Bind methods for this
simple demo program are:

Bind (wxEVT_MENU, &Builder::0nClick, this, mkHELLO);
Bind (wxEVT_MENU, &Builder::Exit, this, wxID_EXIT);
Bind (wxEVT_MENU, &Builder::Clear, this, mkCLEAR);
Bind (wxEVT_MENU, &Builder::About, this, wxID_ABOUT);
Bind (wxEVT_MENU, &Builder::fileOpen, this, mkOPEN);

Then you can easily write the simple methods:

void Builder::Exit(wxCommandEvent& event) {
frame->Close(true);

void Builder::Clear(wxCommandEvent& event) {
name->SetLabelText("");
greeting->SetLabelText("");

}

The OnClick method is just the same as it was for the HiThere

program above.

The About menu item pops up a simple Info Dialog:

void Builder: :About(wxCommandEvent& event) {
wxMessageDialog* dlg = new wxMessageDialog(NULL,
wxT("A simple menu demo"), wxT("Info"), wxOK);
dlg->ShowModal();

Creating user interfaces 158

This is shown in Figure 13-9.

Info X

o A simple menu demo

Figure 13-9 - An Infor dialog for the About menu item

Dialog Boxes

You can make several useful, common dialog boxes from the
wxMessageDIalog widget varying the icons and buttons you
select by ORing these symbols together:

wxOK, wxCANCEL, wxYES_NO, wxHELP, wxNO_DEFAULT,
wXCANCEL_DEFAULT, wxYES_DEFAULT,

wXYES_DEFAULT, wxOK_DEFAULT, wxICON_NONE,
wXICON_EXCLAMATION, wxICON_ERROR, wxICON_HAND,
wxICON_QUESTION, wxICON_INFORMATON, wxCENTRE and,
WXSTAY_ON_TOP.

Here are four of the most common ones, as suggested by the
Zetcode tutorial:

Info X Error

o Program is running e Error reading file

Question Exclamation

G Do you want to quit? I Division by zero!

Ys | [I

You can create these dialogs with the following calls to the
MessageDialog:

wxMessageDialog* dlg = new wxMessageDialog(NULL,

Creating user interfaces 159

wxT("Program is running"), wxT("Info"),
wxOK |[wxICON_INFORMATION);

wxMessageDialog* dlg = new wxMessageDialog(NULL,
wxT("Error reading file"), wxT("Error"),
wxOK | wxICON_ERROR);

Unlike dialogs in other GUI systems, the dialog does not return
any value directly. Instead, you must check the value of
dlg.ShowModal(), which may be wxID_OK, wxID_CANCEL,
wxID_YES, wxID_NO or wxID_HELP, and take appropriate
action.

The File Dialog

There are a number of specialized dialogs available for selecting
colors and fonts and the like, but one you are most likely to use
is the wxFileDialog for opening and saving files. It has the form:

wxFileDialog
openFileDialog(this, _
"prompt string",

"default directory",
"default file",

"wildcard filter (*.jpg"),
flags);

Where the flags can be some of the following:

wXxFD_OPEN or wxFD_SAVE, //is either an open or save
wXxFD_OVERWRITE_PROMPT, //prompt to confirm a file

//may be overwritten
wxFD_FILE_MUST_EXIST,
WxFD_MULTIPLE,
wxFD_CHANGE_DIR //change to the current directory

Installing wxWidgets

You can download prebuilt binaries for all platforms [8]. For
Windows, and Visual Studio, see Reference 9. You can then find
Windows solution files for building debugging and release
versions for both 64-bit and 32-bit systems.

https://docs.wxwidgets.org/3.0/classwx_file_dialog.html
https://docs.wxwidgets.org/3.0/group__group__funcmacro__string.html#ga8a02b8875a521df57263a9e6f090f2d0

Creating user interfaces 160

To create wxWidget programs your project properties should
have include file paths set to

$(wxwin)\include;$(wxwin)\include\msvc;$(IncludePath)

And your library path to

$(wxwin)\1lib;$(LibraryPath)

Where $wxwin is an environment variable you set to the top
level directory where wxWidgets is installed.

Under C/C++ Preprocessor, Preprocessor Definitions should be
set to

_DEBUG;

MOREADDING_EXPORTS;
_CONSOLE;
_CRT_SECURE_NO_DEPRECATE=1;
_CRT_NON_CONFORMING_SWPRINTFS=1;
_SCL_SECURE_NO_WARNINGS=1;
_WXMSW__;

_UNICODE;

_WINDOWS;

NOPCH;

Win32_LEAN_AND_MEAN;
%(PreprocessorDefinitions)

Example Programs on GitHub

In cases where there are multiple files as part of a project, they
are all stored in a folder together.

e wxHello.py — wxPython version of Hello World

e Framel.cpp — Hello World title in plain window.

e Frame2.cpp — Simple window with title bar and
Greetings label displayed

e Frame3.cpp — Same window using BoxSizer.

e Hithere.cpp — BlueLabel, entry field and “Say hi” button
that reads the name and says Hi to it.

Creating user interfaces 161

Add2widgets.cpp — Adds 2 numbers and displays
answer. Uses GridBagSizer and the Command pattern.
Moreadding.cpp — same as above only using a Mediator
class instead of putting code in the Builder.
HelloMenu.cpp — Adds a menu to the Hithere.cpp
program above.

Dialogs.cpp — illustrates 4 types of wxMessageDialogs.
Preproc.txt — The text of the preprocessor definitions.

References

1. https://docs.wxwidgets.org

2. Julian Smart and Kevin Hock, Cross-Platform GUI
Programming with wxWidgets, Prentice-Hall, 2008.

3. Better examples: https://wiki.wxwidgets.org/Main Page
and https://zetcode.com/gui/wxwidgets/

4. A complete list of color names can be found at
https://docs.wxwidgets.org/3.0/classwx_colour_database
-html

5. A complete list of some 70 stock menu names can be
found at
https://docs.wxwidgets.org/3.0/page stockitems.html

6. Installing wxWidgets for Visual Studio.
https://www.youtube.com/watch?v=1fZL13jIbFQ

7. Using wxWidgets in CLion.
https://forums.wxwidgets.org/viewtopic.php?t=45198

8. Installing wxWidgets.
https://docs.wxwidgets.org/3.2.3/overview_install.html

9. Installing wxWidgets for Windows and Visual Studio

https://docs.wxwidgets.org/3.2.3/
plat_msw_binaries.html

https://docs.wxwidgets.org/
https://wiki.wxwidgets.org/Main_Page
https://docs.wxwidgets.org/3.0/classwx_colour_database.html
https://docs.wxwidgets.org/3.0/classwx_colour_database.html
https://docs.wxwidgets.org/3.0/page_stockitems.html
https://forums.wxwidgets.org/viewtopic.php?t=45198
https://docs.wxwidgets.org/3.2.3/

Creating user interfaces 162

Choices and Listboxes 163

14. Choices and Listboxes

The two most common ways of giving your user choices are
radio buttons and checkboxes. Except for the shape of the button
(round vs square) and whether you can check more than one,
they are remarkably similar to create.

RadioButtons

If you want your user to pick only one of several choices, radio
buttons are your best bet. You simply create a panel and insert all
the individual buttons in that panel, This makes them all part of
the same group, and you can only select one button from a
group. If you want another grouping as well, just put them in
another panel. The wxWidgets system also allows you to change
to a new group in the middle of adding buttons to the same panel
by adding the wxRB_GROUP modifier to that button, but this is
not a great idea, since it could be visually confusing to your user.

So, to create a group of wxRadioButtons you simply create a
panel and add them, usually using a vertical BoxSizer. We make
the following call for each button.

cred = new wxRadioButton(panel, wxID_ANY,
wxString("Red"));
btSizer->Add(cred);

The result looks like the left image in Figure 14-1. Clearly this
is a little crowded.

A better way is to create a little method that adds space to the left
of each button and some space between the buttons. That code is
simply

Choices and Listboxes 164

wxRadioButton* Builder::addButton(wxPanel* pnl, string
label) {
//create the button
wxRadioButton* cbut =
new wxRadioButton(pnl, wxID_ANY, wxString(label));
// put it in a horizontal BoxSizer space to the left
wxBoxSizer* hbox = new wxBoxSizer (wxHORIZONTAL);
hbox->AddSpacer(20);
hbox->Add(cbut);
btSizer->Add(hbox);
btSizer->AddSpacer(10); //add space after button
return cbut;

}

Then in the main builder routine we call this function 3 times:
cred = addButton(panel, "Red");

cblue = addButton(panel, "Blue");
cgreen = addButton(panel, "Green");

The result is on the right side of Figure 14-1.

.....................

) Green () Blue
Check () Green

Check

Figure 14-1 -- Radio buttons without and with spacers

Reading the Radio buttons

Finding out which button is selected is much simpler than in
Python’s tkinter approach. You can iterate through the buttons

Choices and Listboxes 165

and find which one is selected and place that label at the top of
the window using the GetFirstInGroup() and
GetNextInGroup() methods. Then for each button, you call
GetValue(). If it returns true, that button is selected.

void Builder::0nClick(wxCommandEvent& event) {
//get first button
wxRadioButton* cbut = cred->GetFirstInGroup();
do {
if (cbut->GetValue()) //true if selected
topLabel->SetLabelText(cbut->GetLabelText());
cbut = cbut->GetNextInGroup(); //get next button
} while (cbut != NULL); //until done

}

The result is show in Figure 14-2.

—m' O X

Blue

{) Red
(@) Blue
() Green

Figure 14-2 -- Label contains the text of the selected button

Responding to RadioButton clicks

Let’s consider a program where the display changes whenever
you click on any of the radio buttons. This means that instead of
using that Check button to check the settings of the radio buttons
you see a result as soon as you click on one. Figure 14-3 shows a
simple example program that changes the color of the right-hand
panel as soon as you click on a button.

Choices and Listboxes 166

B ' Colors — O X

i) Red
() Blue

Figure 14-3 --Change colors on click

The GUI is made of two panels, with the left panel the same
three-color buttons. The right panel’s background color changes
whenever you click on one of them.

The simplest way to do this is to bind each of the three buttons to
a click event:

cred = addButton(leftPanel, "Red");
cred->Bind (wxEVT_RADIOBUTTON, &Builder::redClick, this);

cblue = addButton(leftPanel, "Blue");
cblue->Bind (wxEVT_RADIOBUTTON, &Builder::blueClick, this);

cgreen = addButton(leftPanel, "Green");
cgreen->Bind(wxEVT_RADIOBUTTON, &Builder::greenClick,
this);

Then the click events simply change the right panel’s color. Note
that you have to refresh the panel for that color to change:

void Builder::redClick(wxCommandEvent& event) {
rightPanel->SetBackgroundColour("red");
rightPanel->Refresh();

void Builder::blueClick(wxCommandEvent& event) {
rightPanel->SetBackgroundColour("blue");
rightPanel->Refresh();

}

void Builder::greenClick(wxCommandEvent& event) {
rightPanel->SetBackgroundColour("green");
rightPanel->Refresh();

Choices and Listboxes 167

This will work for a small number of buttons, but for a larger
number it can get a bit unwieldy.

A second way to select the right action is to bind all of the
buttons to a single onClick method and then iterate through the
buttons to find the selected one, much as we did earlier.

void Builder::onClick(wxCommandEvent& event) {

//get first button

wxRadioButton* cbut = cred->GetFirstInGroup();

do {

if (cbut->GetValue()) {

wxString 1bl = cbut->GetLabelText();
1bl.LowerCase();
rightPanel->SetBackgroundColour(wxColor(1lbl));

}
cbut = cbut->GetNextInGroup(); //get next button
} while (cbut != NULL); //until done

rightPanel->Refresh();

Finding the calling object

The third way to handle this is to find the object that caused the
event. Here we get that object from the event using the
GetEventObject method. Then we cast it to the
wxRadioButton* type and fetch the label, representing the
color.

void Builder::onClick3(wxCommandEvent& event) {
//get the object that caused the event
auto winobj = event.GetEventObject();
//cast to wxRadioButton*
wxRadioButton* cbut = (wxRadioButton*)winobj;
wxString 1bl = cbut->GetLabelText();
1bl.LowerCase();
rightPanel->SetBackgroundColour(wxColor(1lbl));
rightPanel->Refresh();

Choices and Listboxes 168

ListBoxes

ListBoxes in wxWidgets are pretty easy to use. In fact, they are
simpler than the ones in tkinter. You can create a simple ListBox:

lbox = new wxListBox(panel, wxID_ANY,
wxDefaultPosition, wxSize(150, 100),
@, NULL, wxLB_SINGLE);

Instead of a specific size, you could put in wxDefaultSize, but
the default sizes are often pretty big. There are a number of
styles you can choose from for a listbox, and some of them can
be ORed together where this makes sense.

e wxLB SINGLE (equals 0) — can select a single entry

e wxLB MULTIPLE — can select more than one entry

o wxLB EXTENDED - can select more using the Shift
and Ctrl keys

e wxLB HSCROLL - create horizontal scroll bar for long
entries(Windows only)

o wxLB ALWAYS SB - always show a vertical scroll bar

o wxLB NEEDED SB — create a vertical scroll bar if
needed (default)

o wxLB NO_SB - never create a vertical scrollbar
(Windows and GTK only)

o wxLB_SORT - sort the list

If you don’t need any of those options, you can leave out the last
three arguments:

lbox = new wxListBox(panel, wxID_ANY,
wxDefaultPosition, wxSize(150, 100));

You can also load some entries into the listbox in the constructor:

wxString choices[2] = { "Anne", "Betty" };

lbox = new wxListBox(panel, wxID_ANY,
wxDefaultPosition, wxSize(150, 100), 2, choices,
wxLB_MULTIPLE);

Choices and Listboxes 169

As shown, you must indicate the number of strings the listbox is
to load (here, 2) along with the array of strings.

The other way to add strings to the listbox is using the Append
method:

1box->Append (wxT("Fred"));
1box->Append (wxT("Sally"));
1box->Append(wxT("Sam"));
1box->Append (wxT("Bridget"));

Together, the two of these produce the listbox in Figure 14-4.

B ' Name list — O X | BT Name list - O X
Fred Betty Sally

Anne Anne
B
= — Fred
Sally
Sam Sam
Bridget Bridget

Figure 14-4 —Single(a) and multiselect(b) listboxes

To get the line or lines selected in the ListBox, you have two
choices. For a single selection listbox, you get the index of the
line selected, and then fetch the string at the position if it is a
positive number. If it is negative, no line has been selected:

// get the index and fetch that line
int index = lbox->GetSelection();
if (index >=0)
title->SetLabel(1lbox->GetString(index));

If you try to fetch a string with a negative index, an error will
occur.

The second approach is for multi-select listboxes, but in fact
works for single select just as well. You create a wxArraylnt

Choices and Listboxes 170

object and pass it to the GetSelections method. It returns the
number of lines selected and the indexes of those selections in
the Arraylnt object. You fetch each one using the Item method of
that array:

//This will work with the multiple and the single versions
wxArrayInt selections; //create the empty array
int count = lbox->GetSelections(selections); //load it
string text = ""; //append all selections here
for (int 1 = 0; i < count; i++) {
int index = selections.Item(i);
text += lbox->GetString(index) + " ";

}
title->SetLabel(text); // set all the text in label

The resulting display is shown in Figure 14-4b.

It is important to note that you cannot use the GetSelection
method in a multi-select listbox. It will cause an error.

CheckListBoxes

You can use the same code to display a listbox with checks by
calling wxCheckListBox instead of the wxListBox. The only
difference is for each element, you have an isChecked method
you can call. Checks are separate from whether a line is selected
or not. This is illustrated in Figure 14-5.

B ' Name list - O X
Fred
D
(] Betty
Fred
Clsaly oo,

Get

Figure 14-5 -- Example of a CheckListBox

Choices and Listboxes 171

The StatelLister Application

Now that we’ve spent some time on listboxes, let’s consider a
more elaborate case, where we have an array of State classes that
we create by reading in the states.txt file. Each state has a name,
abbreviation, capital and founding date. The app looks like that
in Figure 14-6.

B ' State List - O X

Connecticut

Alabama ~
Alaska cT
Arizona 1788
Arkansas

California Hartford
Colorado

Connecticut

Delaware

Florida

Georgia -

Figure 14-6 -The StateLister app

The State class is pretty obvious. It stores those four properties
for each state and lets you fetch them from each instance using
getter methods. The constructor for each State instance uses our
StrFuncs utility class to split up the comma-separated list and put
the four values into the instance variables:

State::State(std::string line) {
vector<std::string> tokens =
Strfuncs::split(line, ",");
name = tokens[0];
abbrev = tokens[1];
date = tokens[2];
capital = tokens[3];
}
string State::getName() { return name; }
string State::getAbbrev() { return abbrev; }
string State::getDate() { return date; }
string State::getCapital() { return capital; }

Choices and Listboxes 172

And the surrounding StateList class reads each line, creates a
State instance and stores it in a vector where you can easily
retrieve it.

//reads and keeps the State list
class Statelist {
private:

vector<State*> states;

public:
//read in the States file and store each State in a vector
StateList(string fileName) {

ifstream myfile(fileName);
string line;
if (myfile.is_open()) {
while (getline(myfile, line)) {
states.push_back(
new State(line));

myfile.close();
}

else cout << "Unable to open file";

}
//get the whole vector

vector<State*> getStates() {
return states;

}
//get a single state

State* getState(int index) {
return states[index];

}
1

Using a Mediator Class

This program consists of s number of classes and widgets, and it
is probably time to consider using a Mediator class to handle the
interactions between them. The Mediator knows about the
StateList and State classes as well as the listbox and the four

Choices and Listboxes 173

labels in the right panel. So when there is a click on the listbox,
the OnClick event just tells the Mediator to handle it.

void MyFrame::onClick(wxCommandEvent& ev) {
med->1istClick(ev);

}

Then, the Mediator fetches the correct State from the StateList

class and loads the labels:

void Mediator::listClick(wxCommandEvent& ev) {
//first get the entry clicked on
int index = statelListBox->GetSelection();

//then get the state object at that index
State* state = stateList->getState(index);

//load the labels with that State's data
1bName->SetLabelText(state->getName());
1bAbbrev->SetLabelText(state->getAbbrev());
lbDate->SetLabelText(state->getDate());
1bCapital->SetLabelText(state->getCapital());

The only real overhead in using a Mediator is passing the
variables it needs into the Mediator class. Some of this happens
in the constructor:

med = new Mediator(statelList);
and the rest in a couple of set methods:

//read in states
Statelist* sList = new StatelList("States.txt");
med->setStatelList(sList);
med->setlLabels(1lbName, lbAbbrev, lbDate,
1lbCapital);

And the Mediator loads the listbox from the StateList vector:

void Mediator::setStatelList(StatelList* slist) {
stateList = slist;

//get the vector and load the listbox
vector<State*> states = statelList->getStates();

Choices and Listboxes 174

for (int i = @; 1 < states.size(); i++) {
stateListBox->Append(

}

wxString(states[i]->getName()));

This takes the complexity of the loading and clicking out of the
Builder, which is only supposed to create the GUI and puts all
the interactions in a single place: the Mediator. As your GUI
programs become more complex this Mediator Design Pattern is
an ideal way to group your GUI and other object interactions.

The ComboBox

The combo box (Figure 14-7) is pretty much the same as a
regular list, except that is drops down instead of taking up a lot

of space all the time:

B ' State List

- O X

Alaska

Arizona
Arkanszas
California
Colorado
Connecticut
Delaware
Flarida
Georgia
Hawaii
|daho

Hinniz

Alaska
AR
1960

Juneau

Figure 14-7 -- The state list using a combo box

Loading the combo box is just the same as for a regular listbox:

Choices and Listboxes 175

// create a vector list of State objects
// and then insert the names of the states in the combobox
std::vector<State*> states = sList->getStates();
for (int 1 = @; i < states.size(); i++) {
statelList->Append(
wxString(states[i]->getName()));

}

The only other difference is the name of the click event:

//connect item click to the onClick method
Bind (WwxEVT_COMBOBOX, &MyFrame::onClick, this);

Checkboxes

The wxCheckBox is very similar to the wxRadioButton, except
that checkboxes are not grouped and you can select as many
boxes as you want. Since they are not grouped, there is no
convenient way to iterate through them to see what has been
checked. Therefore, most people keep a vector with pointers to
the checkboxes so you can quickly find out which are checked.

In this pizza ordering example (Figure 14-8), we click on the
checkboxes and the ordered toppings appear in the righthand
listbox.

B ' Order pizza — 0 %
Pepperoni Red peppers
[]Sausage Onien .
[1Mushroom Pepperoni

Red peppers
Pineapple

Clear

Figure 14-8 --Pizza ordering using check boxes.

Choices and Listboxes 176

Note that there is no “Get” or “Order” button. Clicking on any
checkbox immediately adds that topping to the list. There are a
couple of ways you can do this. Once is to Bind each checkbox
to the OnClick event handler, but a simpler way is to simply bind
the left panel to the checkbox click event, since the events
propagate up into the container that hold them.

We create the checkboxes in the code below.

leftSizer = new wxBoxSizer (wxVERTICAL);
leftPanel->SetSizer(leftSizer);
leftSizer->AddSpacer(20);
addCheckBox("Pepperoni", leftSizer);
addCheckBox("Sausage", leftSizer);
addCheckBox("Mushroom", leftSizer);
addCheckBox("Onion", leftSizer);
addCheckBox("Red peppers", leftSizer);
wxCheckBox* pine =
addCheckBox("Pineapple", leftSizer);
pine->Disable();
Bind (wxEVT_COMMAND_CHECKBOX_CLICKED,
&Builder::0nClick, this);

Note that in honor of the internet joke that “pineapple does not
belong on pizza,” we disable that choice. The addCheckBox
method below adds the checkbox to the sizer and to the vector
where you can check out its contents later.

//Adds a checkbox to the left panel's sizer

wxCheckBox* Builder::

addCheckBox(string label, wxSizer* leftChecks) {
wxCheckBox* cbl = new wxCheckBox(leftPanel,

wxID_ANY, wxString(label));

leftChecks->Add(cbl);
leftChecks->AddSpacer(5);
checks.push_back(cbl); //and to the vector list
return cbl;

1

Finally, the OnClick event clears the listbox and refills it with the
currently check items:

//fills 1list with currently checked items
void Builder::0nClick(wxCommandEvent& event) {

Choices and Listboxes 177

wxCheckBox* cb1l;
orderList->Clear(); //clear the listbox

//and re-fill it from the checkboxes
for (int i = @; i < checks.size(); i++) {
cbl = checks.at(i);
if (cbl->IsChecked()) {
wxString label = cbl->GetLabel();
orderList->InsertItems(1, &label, 0);

Checkbox styles

You can change the checkbox styles with these flags, some of
which can be ORed together:

e wxCHK 2STATE - creates standard 2 state checkbox

o wxCHK 3STATE — creates 3 state checkbox

e wxCHK ALLOW 3RD STATE FOR USER —user
can click all 3 states

e wxALIGN RIGHT — puts label to left of checkbox

Figure 14-9 shows all three staes and both alignments.

—RT 0O X

George[|

Check

Figure 14-9 --All 3 states of checkbox, and both alignments

Choices and Listboxes 178

To get all 3 states, you must OR the second the third flags
together and include the two default placeholders before
specifying the flags.
wxCheckBox* cbut =

new wxCheckBox(pnl, wxID_ANY, wxString(label),

wxDefaultPosition, wxDefaultSize,
WXCHK_3STATE |wxCHK_ALLOW_3RD_STATE_FOR_USER);

For a 3-state checkbox, there are 3 values,

wxCHK UNCHECKED, wxCHK CHECKED, and

wxCHK UNDETERMINED. You can access these with the
Get3StateValue and Set3StateValue methods, and you can
change the state of the checkbox by using the Set3StateValue
method to change he state of the checkbox’s operation.

Displaying tables in a grid

The wxGrid widget is a really flexible, easy-to-use table display
that can even let you edit the cells in real time. In Figure 14-10
we see how it looks in its simplest form:

B ' State List - O X
A B C p °
1 |Alabama AL Mentgemery 1819
2 |Alaska AK Juneau 1960
3 |Arizona AT Phoenix 1912
4 |Arkansas AR Little Rock 1836
5 |California CA Sacramento 1830
6 |Colorado co Denver 1876
T |Connecticut CT Hartford 1788
8 |Delaware DE Dover 1787
9 |Florida FL Tallahassee 1845 o
£ >
Show select Save

Figure 14-10 -- a wxGrid display of the states

Choices and Listboxes 179

Creating this grid amounts to specifying the grid dimensions and
setting the column widths:

//create the grid, 50 x 4

stateGrid = new wxGrid(leftPanel, wxID_ANY,
wxDefaultPosition, wxSize(400, 225));

stateGrid->CreateGrid(50, 4);
stateGrid->SetColSize(1l, 4@);//set column sizes
stateGrid->SetColSize(3, 60);
stateGrid->SetRowLabelSize(30);
pnlSzr->Add(stateGrid);

Then to load it, we use the familiar States class to read in the
states.txt file and then get the states one at a time and load each
row:

// and then insert the values for the states into the grid
vector<State*> states = sList->getStates();
for (int i = @; i < states.size(); i++) {
stateGrid->SetCellvValue(i, O,
wxString(states[i]->getName()));
stateGrid->SetCellvalue(i, 1,
wxString(states[i]->getAbbrev()));
stateGrid->SetCellvalue(i, 2,
wxString(states[i]->getCapital()));
stateGrid->SetCellvValue(i, 3,
wxString(states[i]->getDate()));
}

By default, the cells are editable unless you call the grid’s
DisableCellEditControl() method.

To save the results of any cell edit, you need to catch that event
by Binding it to some code to save the new value.

//connect item click to the onClick method
Bind (wxEVT_GRID_CELL_CHANGED,
&MVyFrame::saveClick, this);

Then, to save that edit you need to fetch that string and put it
back into the state array:

//Save data for selected state
void Mediator::saveState(wxGridEvent& gev) {
int row = gev.GetRow();

Choices and Listboxes 180

int col = gev.GetCol();

//get the changed cell text

string gtext = stateGrid->GetCellValue(row,
col).ToStdString();

State* state = statelList->getState(row);

//convert column number to a property
//and save it back into the state vector
switch (col) {

case 0: state->setName(gtext); break;
case 1: state->setAbbrev(gtext); break;
case 2: state->setCapital(gtext); break;
case 3: state->setDate(gtext); break;

Now, that data are only in memory, and to save it in a file, you
must click on that Save button. It will run through the entire
vector of states, convert each to a comma-separated list and store
it in a new file, in this case states1.txt.

void Mediator::saveStates() {
//save all the states to a new file
ofstream stFile("statesl.txt");
vector<State*> stateVector =
statelList->getStates();
for (auto iter(stateVector.begin());
iter != stateVector.end(); ++iter) {
State* st = *iter;

//get comma sep string
string output = st->getLineString();
stFile << output << endl; //and write it

}

stFile.close();

Selecting Grid regions

The wxGrid widget lets you select any region of cells and do
with it what you will. In we show a selected region, and the
popup window of the data in those cells:

Choices and Listboxes 181

¥ | State List 1 | Cells selected

o Arkansas, AR, Little Rock, California, CA, Sacramento,

A B [Hartford, Delaware, DE, Dover,

Alabama AL Mantg
Alaska AK Juneay

Arizona A7 Phoeni

Arkansas __|AR |LittleR

C1
2
3 |
4
Wl California
6
T
8
9

Colorado

Connecticut

Delaware

Florida FL Tallaha

Show select Say

Figure 14-11 --wxGrid region selection and popup window showing that data

void Mediator::rangeClick(wxCommandEvent& ev) {
//strings saved here
std::vector <wxString> tokens;

//go through all the rows
for (int i = 0;
i < stateGrid->GetNumberRows(); ++i) {
if (stateGrid->IsInSelection(i, 9)) {
//go through each column in that row
for (int c = 0;
c < stateGrid->GetNumberCols();
c++) {
if (stateGrid->IsInSelection(i, c)) {
tokens.push_back
(stateGrid->GetCellValue(i, c));

}
}

//now create a Message Dialog with the result

string message = 5
for (int 1 = @; i < tokens.size(); i++) {

}

message += tokens[i] + ", ";
wxMessageDialog* dial = new wxMessageDialog(NULL,

Choices and Listboxes 182

wxString(message), wxT("Cells selected"), wxOK);
dial->ShowModal();

Other wxGrid features

You can specify any cell as being a number cell with
SetColFormatNumber, SetColFormatFloat, or
SetColFormatBool.

The Tree widget

The wxTreeCtrl represents a tree with the root at the top and
branches of data under it. Creating the tree visual is extremely
easy: the more involved part might be representing the data
behind it. Skipping, that we’ll just create a tree (Figure 14-12)
using a couple of state’s data:

B Treee. — O X

- B

E| Califernia
{E-CA
{ ‘... Sacramento
E| Kansas

o KS

Figure 14-12 --The Tree control with two states shown

The code amounts to creating a root and adding children to it:

panel = new wxPanel(frame, wxID_ANY);
wxBoxSizer* sizer = new wxBoxSizer(wxVERTICAL);
panel->SetSizer(sizer);
tree = new wxTreeCtrl(panel, wxID_ ANY,
wxDefaultPosition, wxSize(200, 200),
WXTR_DEFAULT_STYLE, wxDefaultValidator,
wxString("state tree"));

Choices and Listboxes 183

sizer->Add(tree);

wxTreeltemId rootId = tree->AddRoot("States");
wxTreeltemId child =

tree->AppendItem(rootId, "California");
wxTreeltemId childl =

tree->AppendItem(child, "CA");
tree->AppendItem(childl, "Sacramento");

wxTreeItemId newRoot =
tree->AppendItem(rootld, "Kansas");
wxTreeIltemId child2 =
tree->AppendItem(newRoot, "KS");
tree->AppendItem(child2, "Topeka");
frame->Show();

As you can see, the Tree is extremely easy to use. While it isn’t
the default like in the Grid, it is possible to create a tree with
editable labels and edit events by using the

wxTR_EDIT LABELS style when you create the tree widget.

Moving on

We’ve shown you how to create and use all the common widgets
in wxWidgets. Nearly all of them are easier to use than the
analogous controls in tkinter. In the following chapters we’ll
look at several other common tools that are analogous to ones
available on Python.

Example programs on GitHub

e Radiobuts.cpp — radio buttons with and without spacers

e Radioboxing.cpp — illustrates RadioBoxes.

e RadioColor.cpp — uses 3 onClick events

e RadioColor2.cpp — shows both scanning the list and
getting the button from the event

e SimpleListbox.cpp — single and multiselect and check
listboxes.

o StateLister — List box of state objects showing details

e StateListCombo — same as State Lister but using a
combo box

Choices and Listboxes 184

PizzaChecker — Adds pizza orders from checkboxes to a
listbox

Check3state.cpp — shows all 3 states of checkbox
StateListGrid — shows the basic wxGrid display of states
Treectrl.cpp — a simple Tree control widget example

Choices and Listboxes 185

Part II- Application Development

In this section we discuss libraries for mathematical
computations, plotting and connecting to databases.

For math computations we explain how to use the public domain
Armadillo library, which provides much the computational
features that you find in Python’s Numpy library, and which is
similar to Matlab in capabilities.

For plotting, we discuss both SciPlot and ROOT, which each
have advantages.

And finally, we discuss connecting to databases, with examples
connecting to SQL.ite and to MySQL. We end up developing a
framework which will work with either, even though the
underlying interface code is significantly different between the
two systems.

Choices and Listboxes 186

The Armadillo Math Library 187

15. The Armadillo Math Library

Armadillo is a C++ open-source linear algebra library that allows
you to manipulate matrices and carry out quite a number of
useful computations. It was developed by Conrad Sanderson and
Ryan Curtin at the University of Queensland and Griffith
University. The library is licensed under the relatively permissive
Apache license and the syntax of the library classes are
deliberately similar to those in Matlab, and much the same as the
classes in Numpy.

Much of Armadillo is built on the OpenBLAS (Basic Linear
Algebra Subprograms) and LAPACK (Linear Algebra Package)
libraries, here wrapped into useful classes. The library is
available for Windows, Macs and Linux. For experimentation
and initial development, Window may be easier, but the math
libraries run faster on Linux platforms. It also uses delayed
evaluation at compile time to increase computational efficiency.
Nearly all of the classes in Armadillo are implemented as
templates, and for that reason, you probably should avoid using
the C++ auto keyword.

Overview of Armadillo Classes

Armadillo contains hundreds of useful classes and functions,
briefly summarized here. The complete list is in the online
documentation.

e Matrix, Vector, Cube and Field classes
o Matrices, columns, rows, cubes and fields
o Determinant, sum, diagonal, transpose, fill with
random numbers, etc.
o Eigen decomposition, inverse, etc.
e Signal and Image Processing
o Convolution
o 1D and 2D FFT
o Interpolation

The Armadillo Math Library 188

o Polynomial fitting

e Statistics and Clustering
o Mean, covariance, correlation
o Principal component analysis
o Probability density function

Matrices

The Mat class is the fundamental dense matrix object in
Armadillo. They are stored column by column. You can create
matrices of any of the common types: double, float, complex
double, complex float, short, int long and unsigned. Here’s a
simple matrix creation command:

//constructing a matrix
Mat<double> A (3,4);

However, Armadillo defines some simple matrix type names to
simplify your programming:

mat = Mat<double>

dmat = Mat<double>

fmat = Mat<float>

cx_mat = Mat<cx_double>
cx_dmat = Mat<cx_double>
cx_fmat = Mat<cx_float>
umat = Mat<uword>

imat = Mat<sword>

So, you can write more simply:

mat B(3, 4);

Matrices are created with all elements set to zero,
but you can create them using several other patterns:

fill::zeros getall elements to 0

fill::ones getall elements to 1

The Armadillo Math Library 189

fill::eye set the elements on the main diagonal to 1 and off-
diagonal elements to 0

fill::randu get all elements to random values from a uniform
distribution in the [0,1] interval

fill::randn get all elements to random values from a
normal/Gaussian distribution with zero mean and unit
variance

fill::value (gsetall elements to specified scalar (Armadillo 10.6 and
scalar) later)

fill::none do not initialize the elements

Thus, this statement fills the matrix with random numbers
between 0 and 1:

mat D(5, 5, fill::randu); //uniform random distribution
D.print(); //print out matrix

giving you a 5x5 matrix of random numbers:

0.8634 0.8296 0.1600 0.2330 0.6979
0.8899 0.1792 0.7420 0.7058 0.3701
0.3604 0.2807 0.7047 0.7213 0.1271
0.4156 0.2088 0.1175 0.3593 0.2863
0.9300 0.8655 0.7502 0.7527 0.2077

You can also perform the standard matrix algebra (add, subtract,
multiply, divide) in Armadillo:

mat E =D + D;

The usual rules apply: you can only add and subtract matrices of
the same dimensions, and to multiply or divide, the number rows
and columns in one must be the same as the number of columns
and rows in the other.

The Armadillo Math Library 190

Columns and Rows

Each matrix column is essentially a one-dimensional matrix, and
since it is derived from the Mat class, most of the methods apply
to both columns and rows. Columns and rows are essentially
vectors, so they are also referred to by the names colvec and
rowvec. Like matrices, the columns and rows have typedefs
for each the common data types: colvec, dcolvec, fcolvec,
cx_colvec and so forth. They are also defined as vec, dvec, fvec,
cx_vec and so forth.

You can, of course get any single column or row using the .row
and .col matrix methods:

//extract a column and print it
colvec q = D.col(9);
q.print();

Matrix methods

But the great power of Armadillo lies in the methods you can use
on any matrix. There are many functions and operations in the
complete list in the documentation, but they include:

Matrix functions

Accu Sum matrix elements

Affmul Affine matrix multiplication

Conj Complex conjugate of each element

Cross Cross product of 2 matrices

Diagmat Generate diagonal matrix

Kron Kronecker tensor product

Norm Normalize vectors

Rank Rank of matrix

Trace Sum of diagonal elements

Trans Transpose of matrix. Also can use .t()
method.

Vectorise Flatten matrix into vector. Note spelling.

The Armadillo Math Library 191

Decompositions, Inverses and Equation Solvers

Chol Cholesky decomposition

Eig_sym Eigen decomposition of dense symmetric
matrix

Hess Upper Hessenberg decomposition

Inv Inverse of square matrix

Svd Singular value decomposition

Syl Sylvester equation solver

Signal and Image Processing

Conv 1 D convolution

Fft 1D fast Fourier transform and inverse
Fft2 2D FFT and inverse

Polyfit Fit a polynomial to a set of points
Polyval Evaluate polynomial

Matrix transpose

Let’s suppose we want to rotate a matrix by 90 degrees. The

trans method will do this for you. In the demo program below,
we create a random number-filled matrix when we click on the
Load button, and transpose it when we click on the Trans
buttons:

B | Display matrix - O X

A

B C

0.000000 0.000000 0.000000

D
0.000000

E
0.000000

0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000

(5, R SRty SR

Load Transpose

Figure 15-1 - 5 x 5 matrix filled with zeroes

The Armadillo Math Library 192

So, as before, the code to create the zero matrix is quite simple.
You can access matrices with zero-based indexing just as if they
were C++ arrays:

//create the matrix

void Mediator::loadClicked() {
//create a 5x5 matrix
A.set_size(5, 5);
A.fill(fill::randu);
loadGrid(A);

}

We load the grid by moving the elements one by on the usual
indexing code. Note that when you access values in a matrix, the
indices are enclosed in parentheses (C(i, j)), not brackets,
since these are arguments to internal methods in the Mat object:
// and copy it into the wxWidgets grid:
void Mediator::loadGrid(mat C) {
for (int i = @; i < C.n_rows; i++) {
for (int j = @; j < C.n_cols; j++) {

numGrid->SetCellvalue(i, j, to_string(C(i,

3

}

The transpose
You could write:

mat B = trans(A);

or, you can use the more compact method built into the Mat
cl